Outline

- Overview
- Hardware
- Memory Optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it’s better to recompute than to cache
 - GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host
Optimize Memory Access

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory

- Optimize for spatial locality in cached texture memory

- In shared memory, avoid high-degree bank conflicts

- Partition camping
 - When global memory access not evenly distributed amongst partitions
 - Problem-size dependent
Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks

- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory
10-Series Architecture

- 240 **thread processors** execute kernel threads
- 30 **multiprocessors**, each contains
 - 8 thread processors
 - One double-precision unit
 - **Shared memory** enables thread cooperation
Execution Model

Software

Hardware

Threads are executed by thread processors

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one time
A thread block consists of 32-thread warps.

A warp is executed physically in parallel (SIMD) on a multiprocessor.

A half-warp of 16 threads can coordinate global memory accesses into a single transaction.
Memory Architecture

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>All threads in a block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
</tbody>
</table>
Outline

- Overview
- Hardware
- **Memory Optimizations**
 - Data transfers between host and device
 - Device memory optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Host-Device Data Transfers

- **Device to host memory bandwidth much lower than device to device bandwidth**
 - 8 GB/s peak (PCI-e x16 Gen 2) vs. 102 GB/s peak (Tesla C1060)

- **Minimize transfers**
 - Intermediate data can be allocated, operated on, and deallocated without ever copying them to host memory

- **Group transfers**
 - One large transfer much better than many small ones
Page-Locked Data Transfers

- `cudaMallocHost()` allows allocation of page-locked ("pinned") host memory

- Enables highest `cudaMemcopy` performance
 - 3.2 GB/s on PCI-e x16 Gen1
 - 5.2 GB/s on PCI-e x16 Gen2

- See the "bandwidthTest" CUDA SDK sample

- Use with caution!!
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits
Overlapping Data Transfers and Computation

- Async and Stream APIs allow overlap of H2D or D2H data transfers with computation
 - CPU computation can overlap data transfers on all CUDA capable devices
 - Kernel computation can overlap data transfers on devices with “Concurrent copy and execution” (roughly compute capability >= 1.1)

- Stream = sequence of operations that execute in order on GPU
 - Operations from different streams can be interleaved
 - Stream ID used as argument to async calls and kernel launches
Asynchronous Data Transfers

Asynchronous host-device memory copy returns control immediately to CPU
- \(\text{cudaMemcpyAsync}(\text{dst}, \text{src}, \text{size}, \text{dir}, \text{stream}); \)
- requires *pinned* host memory (allocated with “cudaMallocHost”)

Overlap CPU computation with data transfer
- \(\text{0} = \text{default stream} \)

\[
\text{cudaMemcpyAsync}(a_d, a_h, \text{size}, \\
\text{cudaMemcpyHostToDevice, 0}); \quad \text{overlapped}
\]

\[
\text{cpuFunction();} \\
\text{cudaThreadSynchronize();} \\
\text{kernel<<<grid, block>>>(dst)};
\]
GPU/CPU Synchronization

Context based
- `cudaThreadSynchronize()`
 - Blocks until all previously issued CUDA calls from a CPU thread complete

Stream based
- `cudaStreamSynchronize(stream)`
 - Blocks until all CUDA calls issued to given stream complete

- `cudaStreamQuery(stream)`
 - Indicates whether stream is idle
 - Returns `cudaSuccess`, `cudaErrorNotReady`, ...
 - Does not block CPU thread
GPU/CPU Synchronization

Stream based using events

- Events can be inserted into streams:
 - `cudaEventRecord(event, stream)`
- Event is recorded when GPU reaches it in a stream
 - Recorded = assigned a timestamp (GPU clocktick)
 - Useful for timing

- `cudaEventSynchronize(event)`
 - Blocks until given event is recorded

- `cudaEventQuery(event)`
 - Indicates whether event has recorded
 - Returns `cudaSuccess`, `cudaErrorNotReady`, ...
 - Does not block CPU thread
Overlapping kernel and data transfer

Requires:

- "Concurrent copy and execute"
- deviceOverlap field of a cudaDeviceProp variable
- Kernel and transfer use different, non-zero streams
- A CUDA call to stream-0 blocks until all previous calls complete and cannot be overlapped

Example:

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, dir, stream1);
kernelf<<<grid, block, 0, stream2>>>(...);
cudaStreamSynchronize(stream2);

overlapped
Outline

- Overview
- Hardware
- **Memory Optimizations**
 - Data Transfers between host and device
 - **Device memory optimizations**
 - Matrix transpose study
 - Measuring performance - effective bandwidth
 - Coalescing
 - Shared memory bank conflicts
 - Partition camping
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Matrix Transpose

- Transpose 2048x2048 matrix of floats
- Performed out-of-place
 - Separate input and output matrices
- Use tile of 32x32 elements, block of 32x8 threads
 - Each thread processes 4 matrix elements
 - In general tile and block size are fair game for optimization
- Process
 - Get the right answer
 - Measure effective bandwidth (relative to theoretical or reference case)
 - Address global memory coalescing, shared memory bank conflicts, and partition camping while repeating above steps

© NVIDIA Corporation 2008
Theoretical Bandwidth

Device Bandwidth of GTX 280

$$\text{Memory clock (Hz)} \times \left(\frac{512}{8}\right) \times \frac{2}{1024^3} = 131.9 \text{ GB/s}$$

Specs report 141 GB/s
- Use $$10^9 \text{ B/GB conversion rather than } 1024^3$$
- Whichever you use, be consistent
Effective Bandwidth

Transpose Effective Bandwidth

\[\frac{2048^2 \times 4 \text{ B/element}}{1024^3 \times 2 \text{ / (time in secs)}} = \text{GB/s} \]

Matrix size (bytes)

Read and write

Reference Case - Matrix Copy

- Transpose operates on tiles - need better comparison than raw device bandwidth
- Look at effective bandwidth of copy that uses tiles
__global__ void copy(float *odata, float *idata, int width, int height)
{
 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index = xIndex + width*yIndex;

 for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
 odata[index+i*width] = idata[index+i*width];
 }
}

TILE_DIM = 32
BLOCK_ROWS = 8
32x32 tile
32x8 thread block

idata and odata in global memory

Elements copied by a half-warp of threads
Matrix Copy Kernel Timing

- Measure elapsed time over loop
- Looping/timing done in two ways:
 - Over kernel launches (\texttt{nreps} = 1)
 - Includes launch/indexing overhead
 - Within the kernel over loads/stores (\texttt{nreps} > 1)
 - Amortizes launch/indexing overhead

```c
__global__ void copy(float *odata, float* idata, int width, int height, int \texttt{nreps})
{
    int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
    int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
    int index  = xIndex + width*yIndex;

    for (int r = 0; r < \texttt{nreps}; r++) {
        for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
            odata[index+i*width] = idata[index+i*width];
        }
    }
}
```
Naïve Transpose

Similar to copy

Input and output matrices have different indices

```c
__global__ void transposeNaive(float *odata, float* idata, int width,
                               int height, int nreps)
{
    int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
    int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

    int index_in  = xIndex + width * yIndex;
    int index_out = yIndex + height * xIndex;

    for (int r=0; r < nreps; r++) {
        for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
            odata[index_out+i] = idata[index_in+i*width];
        }
    }
}
```

`idata` `odata`
Effective Bandwidth

Effective Bandwidth (GB/s)

<table>
<thead>
<tr>
<th>2048x2048, GTX 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop over kernel</td>
</tr>
<tr>
<td>Simple Copy</td>
</tr>
<tr>
<td>Naïve Transpose</td>
</tr>
</tbody>
</table>
Outline

- Overview
- Hardware
- Memory Optimizations
 - Data Transfers between host and device
 - Device memory optimizations
 - Matrix transpose study
 - Measuring performance - effective bandwidth
 - Coalescing
 - Shared memory bank conflicts
 - Partition camping
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Coalescing

Global memory access of 32, 64, or 128-bit words by a half-warp of threads can result in as few as one (or two) transaction(s) if certain access requirements are met.

Depends on compute capability
- 1.0 and 1.1 have stricter access requirements

Examples – float (32-bit) data

Global Memory

- 64B aligned segment (16 floats)
- 128B aligned segment (32 floats)

Half-warp of threads
Coalescing
Compute capability 1.0 and 1.1

- K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

Coalesces – 1 transaction

Out of sequence – 16 transactions

Misaligned – 16 transactions
Coalescing
Compute capability 1.2 and higher

- Coalescing is achieved for any pattern of addresses that fits into a segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 32- and 64-bit words
- Smaller transactions may be issued to avoid wasted bandwidth due to unused words

1 transaction - 64B segment

2 transactions - 64B and 32B segments

1 transaction - 128B segment
Coalescing in Transpose

Naïve transpose coalesces reads, but not writes

Elements transposed by a half-warp of threads
Shared Memory

- ~Hundred times faster than global memory
- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
Coalescing through shared memory

- Access columns of a tile in shared memory to write contiguous data to global memory
- Requires __syncthreads() since threads write data read by other threads

Elements transposed by a half-warp of threads
__global__ void transposeCoalesced(float *odata, float *idata, int width, int height, int nreps)
{
__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;

for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
 }

 __syncthreads();

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];
 }
}
}
Effective Bandwidth

<table>
<thead>
<tr>
<th>Effective Bandwidth (GB/s)</th>
<th>2048x2048, GTX 280</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loop over kernel</td>
</tr>
<tr>
<td>Simple Copy</td>
<td>96.9</td>
</tr>
<tr>
<td>Shared Memory Copy</td>
<td>80.9</td>
</tr>
<tr>
<td>Naïve Transpose</td>
<td>2.2</td>
</tr>
<tr>
<td>Coalesced Transpose</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Uses shared memory tile and __syncthreads()
Outline

- Overview
- Hardware
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Matrix transpose study
 - Measuring performance - effective bandwidth
 - Coalescing
 - Shared memory bank conflicts
 - Partition camping
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Shared Memory Architecture

- Many threads accessing memory
 - Therefore, memory is divided into banks
 - Successive 32-bit words assigned to successive banks

- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks

- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized
Bank Addressing Examples

No Bank Conflicts
Linear addressing
stride == 1

- Thread 0
- Thread 1
- Thread 2
- Thread 3
- Thread 4
- Thread 5
- Thread 6
- Thread 7
- Thread 15

- Bank 0
- Bank 1
- Bank 2
- Bank 3
- Bank 4
- Bank 5
- Bank 6
- Bank 7
- Bank 15

No Bank Conflicts
Random 1:1 Permutation

- Thread 0
- Thread 1
- Thread 2
- Thread 3
- Thread 4
- Thread 5
- Thread 6
- Thread 7
- Thread 15

- Bank 0
- Bank 1
- Bank 2
- Bank 3
- Bank 4
- Bank 5
- Bank 6
- Bank 7
- Bank 15
Bank Addressing Examples

2-way Bank Conflicts
Linear addressing
stride == 2

```
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

... ...

Thread 8
Thread 9
Thread 10
Thread 11
```

```
Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 15
```

8-way Bank Conflicts
Linear addressing
stride == 8

```
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 15
```

```
Bank 0
Bank 1
Bank 2
Bank 7
Bank 8
Bank 9
Bank 15
```

© NVIDIA Corporation 2008
Shared memory bank conflicts

- Shared memory is ~ as fast as registers if there are no bank conflicts

- `warp_serialize` profiler signal reflects conflicts

The fast case:
- If all threads of a half-warp access different banks, there is no bank conflict
- If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)

The slow case:
- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank
Bank Conflicts inTranspose

- 32x32 shared memory tile of floats
 - Data in columns k and $k+16$ are in same bank
 - 16-way bank conflict reading half columns in tile

Solution - pad shared memory array

```c
__shared__ float tile[TILE_DIM][TILE_DIM+1];
```

- Data in anti-diagonals are in same bank
Effective Bandwidth

<table>
<thead>
<tr>
<th>Method</th>
<th>Loop over kernel</th>
<th>Loop in kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Copy</td>
<td>96.9</td>
<td>81.6</td>
</tr>
<tr>
<td>Shared Memory Copy</td>
<td>80.9</td>
<td>81.1</td>
</tr>
<tr>
<td>Naïve Transpose</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Coalesced Transpose</td>
<td>16.5</td>
<td>17.1</td>
</tr>
<tr>
<td>Bank Conflict Free Transpose</td>
<td>16.6</td>
<td>17.2</td>
</tr>
</tbody>
</table>
Outline

- Overview
- Hardware
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Matrix transpose study
 - Measuring performance - effective bandwidth
 - Coalescing
 - Shared memory bank conflicts
 - Partition camping
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Partition Camping

- Global memory accesses go through partitions
 - 6 partitions on 8-series GPUs, 8 partitions on 10-series GPUs
 - Successive 256-byte regions of global memory are assigned to successive partitions

- For best performance:
 - Simultaneous global memory accesses GPU-wide should be distributed evenly amongst partitions

- Partition Camping occurs when global memory accesses at an instant use a subset of partitions
 - Directly analogous to shared memory bank conflicts, but on a larger scale
Partition Camping in Transpose

- Partition width = 256 bytes = 64 floats
 - Twice width of tile
- On GTX280 (8 partitions), data 2KB apart map to same partition
 - 2048 floats divides evenly by 2KB => columns of matrices map to same partition

<table>
<thead>
<tr>
<th>idata</th>
<th>odata</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
<td>0 64 128</td>
</tr>
<tr>
<td>64 65 66 67 68 69</td>
<td>1 65 129</td>
</tr>
<tr>
<td>128 129 130 ...</td>
<td>2 66 130</td>
</tr>
<tr>
<td></td>
<td>3 67 ...</td>
</tr>
<tr>
<td></td>
<td>4 68</td>
</tr>
<tr>
<td></td>
<td>5 69</td>
</tr>
</tbody>
</table>

blockId = blockDim.x * blockIdx.y + blockIdx.x
Partition Camping Solutions

- Pad matrices (by two tiles)
 - In general might be expensive/prohibitive memory-wise
- Diagonally reorder blocks
 - Interpret blockIdx.y as different diagonal slices and blockIdx.x as distance along a diagonal

<table>
<thead>
<tr>
<th>idata</th>
<th>odata</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 64 128</td>
<td>0</td>
</tr>
<tr>
<td>1 65 129</td>
<td>64 1</td>
</tr>
<tr>
<td>2 66 130</td>
<td>128 65 2</td>
</tr>
<tr>
<td>3 67 ...</td>
<td>129 66 3</td>
</tr>
<tr>
<td>4 68</td>
<td>130 67 4</td>
</tr>
<tr>
<td>5</td>
<td>... 68 5</td>
</tr>
</tbody>
</table>

blockId = blockDim.x * blockIdx.y + blockIdx.x
__global__ void transposeDiagonal(float *odata, float *idata, int width, int height, int nreps)
{
 __shared__ float tile[TILE_DIM][TILE_DIM+1];

 int blockIdx_y = blockIdx.x;
 int blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

 int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;
 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx_y * TILE_DIM + threadIdx.x;
 yIndex = blockIdx_x * TILE_DIM + threadIdx.y;
 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
 }
 __syncthreads();
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];
 }
 }
}
Diagonal Transpose

- Previous slide for square matrices (width == height)
- More generally:

```c
if (width == height) {
    blockIdx_y = blockIdx.x;
    blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;
} else {
    int bid = blockIdx.x + gridDim.x*blockIdx.y;
    blockIdx_y = bid%gridDim.y;
    blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;
}
```
Effective Bandwidth

<table>
<thead>
<tr>
<th>Method</th>
<th>Loop over kernel</th>
<th>Loop in kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Copy</td>
<td>96.9</td>
<td>81.6</td>
</tr>
<tr>
<td>Shared Memory Copy</td>
<td>80.9</td>
<td>81.1</td>
</tr>
<tr>
<td>Naïve Transpose</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Coalesced Transpose</td>
<td>16.5</td>
<td>17.1</td>
</tr>
<tr>
<td>Bank Conflict Free Transpose</td>
<td>16.6</td>
<td>17.2</td>
</tr>
<tr>
<td>Diagonal</td>
<td>69.5</td>
<td>78.3</td>
</tr>
</tbody>
</table>
Order of Optimizations

- Larger optimization issues can mask smaller ones
- Proper order of some optimization techniques in not known \textit{a priori}

 Eg. partition camping is problem-size dependent

- Don’t dismiss an optimization technique as ineffective until you know it was applied at the right time

Naïve\hspace{1cm}Coalescing\hspace{1cm}Bank Conflicts\hspace{1cm}16.6 GB/s\hspace{1cm}Partition Conflicts\hspace{1cm}69.5 GB/s
Naïve\hspace{1cm}Coalescing\hspace{1cm}16.5 GB/s\hspace{1cm}Partition Camping\hspace{1cm}48.8 GB/s
Transpose Summary

- Coalescing and shared memory bank conflicts are small-scale phenomena
 - Deal with memory access within half-warp
 - Problem-size independent

- Partition camping is a large-scale phenomenon
 - Deals with simultaneous memory accesses by warps on different multiprocessors
 - Problem size dependent
 - Wouldn’t see in (2048+32)^2 matrix

- Coalescing is generally the most critical
Outline

- Overview
- Hardware
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Matrix transpose study
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Textures in CUDA

Texture is an object for reading data

Benefits:
- Data is cached (optimized for 2D locality)
 - Helpful when coalescing is a problem
- Filtering
 - Linear / bilinear / trilinear
 - Dedicated hardware
- Wrap modes (for “out-of-bounds” addresses)
 - Clamp to edge / repeat
- Addressable in 1D, 2D, or 3D
 - Using integer or normalized coordinates

Usage:
- CPU code binds data to a texture object
- Kernel reads data by calling a fetch function
Texture Addressing

Wrap
Out-of-bounds coordinate is wrapped (modulo arithmetic)

Clamp
Out-of-bounds coordinate is replaced with the closest boundary
Two CUDA Texture Types

Bound to linear memory
- Global memory address is bound to a texture
- Only 1D
- Integer addressing
- No filtering, no addressing modes

Bound to CUDA arrays
- CUDA array is bound to a texture
- 1D, 2D, or 3D
- Float addressing (size-based or normalized)
- Filtering
- Addressing modes (clamping, repeat)

Both:
- Return either element type or normalized float
CUDA Texturing Steps

Host (CPU) code:
- Allocate/obtain memory (global linear, or CUDA array)
- Create a texture reference object
 - Currently must be at file-scope
- Bind the texture reference to memory/array
- When done:
 - Unbind the texture reference, free resources

Device (kernel) code:
- Fetch using texture reference
- Linear memory textures:
 - `tex1Dfetch()`
- Array textures:
 - `tex1D()` or `tex2D()` or `tex3D()`
Outline

- Overview
- Hardware
- Memory Optimizations
- **Execution Configuration Optimizations**
- Instruction Optimizations
- Summary
Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

- **Occupancy** = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently.

- Limited by resource usage:
 - Registers
 - Shared memory
Grid/Block Size Heuristics

- # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute

- # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren’t waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability – registers, shared memory

- # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations
Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios:

CUDA:

```
x = y + 5;
z = x + 3;
s_data[0] += 3;
```

PTX:

```
add.f32 $f3, $f1, $f2
add.f32 $f5, $f3, $f4
ld.shared.f32 $f3, [r31+0]
add.f32 $f3, $f3, $f4
```

To completely hide the latency:

- Run at least **192** threads (6 warps) per multiprocessor
- At least **25%** occupancy (1.0/1.1), **18.75%** (1.2/1.3)
- Threads do not have to belong to the same thread block
Register Pressure

- Hide latency by using more threads per SM

Limiting Factors:
- Number of registers per kernel
 - 8K/16K per SM, partitioned among concurrent threads
- Amount of shared memory
 - 16KB per SM, partitioned among concurrent threadblocks

Compile with `--ptxas-options=-v` flag

Use `--maxrregcount=N` flag to NVCC
- N = desired maximum registers / kernel
- At some point “spilling” into local memory may occur
 - Reduces performance – local memory is slow
CUDA GPU Occupancy Calculator

3) Enter your resource usage:
- Registers Per Block: 152
- Shared Memory Per Block: 60

4) GPU Occupancy Data is displayed here and in the graphs:
- Active Threads per Multi-Processor: 344
- Active Warps per Multi-Processor: 17
- Active Thread Blocks per Multi-Processor: 2
- Occupancy of each Multi-Processor: 58%
- Maximum Simultaneous Blocks per Multi-Processor: 32

5) Allocation Per Thread Block:
- Warp: 8
- Register: 324
- Shared Memory: 32

6) Choose the occupancy data used in computing the occupancy data file:
- Varying Block Size
- Varying Register Count
- Varying Shared Memory Usage

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda
Optimizing threads per block

Choose threads per block as a multiple of warp size
 Avoid wasting computation on under-populated warps

Want to run as many warps as possible per multiprocessor (hide latency)

Multiprocessor can run up to 8 blocks at a time

Heuristics
 Minimum: 64 threads per block
 Only if multiple concurrent blocks
 192 or 256 threads a better choice
 Usually still enough regs to compile and invoke successfully
 This all depends on your computation, so experiment!
Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT ...

Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available parallelism)
Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
- # of multiprocessors
- Memory bandwidth
- Shared memory size
- Register file size
- Max. threads per block

You can even make apps self-tuning (like FFTW and ATLAS)
- “Experiment” mode discovers and saves optimal configuration
Outline

- Overview
- Hardware
- Memory Optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Instruction cycles (per warp) = sum of
- Operand read cycles
- Instruction execution cycles
- Result update cycles

Therefore instruction throughput depends on
- Nominal instruction throughput
- Memory latency
- Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
- 1.3 GHz on the Tesla C1060, for example
Maximizing Instruction Throughput

- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses

- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads
Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad:
4 cycles per warp

- int multiply (*) is by default 32-bit
 - requires multiple cycles / warp
- Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply

Integer divide and modulo are more expensive

- Compiler will convert literal power-of-2 divides to shifts
 - But we have seen it miss some cases
- Be explicit in cases where compiler can’t tell that divisor is a power of 2!
- Useful trick: foo % n == foo & (n-1) if n is a power of 2
There are two types of runtime math operations in single-precision

- __funcf() : direct mapping to hardware ISA
 - Fast but lower accuracy (see prog. guide for details)
 - Examples: __sinf(x), __expf(x), __powf(x,y)

- funcf() : compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sinf(x), expf(x), powf(x,y)

The -use_fast_math compiler option forces every funcf() to compile to __funcf()
GPU results may not match CPU

- Many variables: hardware, compiler, optimization settings

- CPU operations aren’t strictly limited to 0.5 ulp
 - Sequences of operations can be more accurate due to 80-bit extended precision ALUs

- Floating-point arithmetic is not associative!
FP Math is Not Associative!

- In symbolic math, \((x+y)+z == x+(y+z)\)
- This is not necessarily true for floating-point addition
 - Try \(x = 10^{30}, y = -10^{30}\) and \(z = 1\) in the above equation

- When you parallelize computations, you potentially change the order of operations

- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA – inherent part of parallel execution
Control Flow Instructions

Main performance concern with branching is divergence
- Threads within a single warp take different paths
- Different execution paths must be serialized

Avoid divergence when branch condition is a function of thread ID
- Example with divergence:
  ```c
  if (threadIdx.x > 2) { }
  ```
 Branch granularity < warp size
- Example without divergence:
  ```c
  if (threadIdx.x / WARP_SIZE > 2) { }
  ```
 Branch granularity is a whole multiple of warp size
Summary

GPU hardware can achieve great performance on data-parallel computations if you follow a few simple guidelines:

- Use parallelism efficiently
- Coalesce memory accesses if possible
- Take advantage of shared memory
- Explore other memory spaces
 - Texture
 - Constant
- Reduce bank conflicts
- Avoid partition camping