Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids

March 29th, 2011

Abstract:

We present a computational method of coupling average interpolating wavelets with high-order finite volume schemes and its implementation on heterogeneous computer architectures for the simulation of multiphase compressible flows. The method is implemented to take advantage of the parallel computing capabilities of emerging heterogeneous multicore/multi-GPU architectures. A highly efficient parallel implementation is achieved by introducing the concept of wavelet blocks, exploiting the task-based parallelism for CPU cores, and by managing asynchronously an array of GPUs by means of OpenCL. We investigate the comparative accuracy of the GPU and CPU based simulations and analyze their discrepancy for two-dimensional simulations of shock-bubble interaction and Richtmeyer–Meshkov instability. The results indicate that the accuracy of the GPU/CPU heterogeneous solver is competitive with the one that uses exclusively the CPU cores. We report the performance improvements by employing up to 12 cores and 6 GPUs compared to the single-core execution. For the simulation of the shock-bubble interaction at Mach 3 with two million grid points, we observe a 100-fold speedup for the heterogeneous part and an overall speedup of 34.

(Rossinelli D., Hejazialhosseini B., Spampinato D., Koumoutsakos P.: “Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids”, SIAM Journal of Scientific Computing 33:512-540, 2011 [DOI])

Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting

February 11th, 2008

Abstract: “The widespread usage of the Discrete Wavelet Transform (DWT) has motivated the development of fast DWT algorithms and their tuning on all sorts of computer systems. Several studies have compared the performance of the most popular schemes, known as Filter Bank (FBS) and Lifting (LS), and have always concluded that Lifting is the most efficient option. However, there is no such study on streaming processors such as modern Graphic Processing Units (GPUs). Current trends have transformed these devices into powerful stream processors with enough flexibility to perform intensive and complex floating-point calculations. The opportunities opened up by these platforms, as well as the growing popularity of the DWT within the computer graphics field, make a new performance comparison of great practical interest. Our study indicates that FBS outperforms LS in current generation GPUs. In our experiments, the actual FBS gains range between 10% and 140%, depending on the problem size and the type and length of the wavelet filter. Moreover, design trends suggest higher gains in future generation GPUs. (Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting. Christian Tenllado, Javier Setoain, Manuel Prieto, Luis Piñuel, and Francisco Tirado. IEEE Transactions on Parallel and Distributed Systems ,vol. 19, no. 3, pp. 299-310, March, 2008. )