Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation

January 6th, 2013


Spatial stochastic simulation is a valuable technique for studying reactions in biological systems. With the availability of high-performance computing (HPC), the method is poised to allow integration of data from structural, single-molecule and biochemical studies into coherent computational models of cells. Here, we introduce the Lattice Microbes software package for simulating such cell models on HPC systems. The software performs either well-stirred or spatially resolved stochastic simulations with approximated cytoplasmic crowding in a fast and efficient manner. Our new algorithm efficiently samples the reaction-diffusion master equation using NVIDIA graphics processing units and is shown to be two orders of magnitude faster than exact sampling for large systems while maintaining an accuracy of ∼0.1%. Display of cell models and animation of reaction trajectories involving millions of molecules is facilitated using a plug-in to the popular VMD visualization platform. The Lattice Microbes software is open source and available for download at

(Elijah Roberts, John E. Stone and Zaida Luthey-Schulten: “Lattice Microbes: High-Performance Stochastic Simulation Method for the Reaction-Diffusion Master Equation”, Journal of Computational Chemistry, 34:245-255, 2013. [DOI])

A GPU-Based Multi-Swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series

August 1st, 2012


Parameter estimation (PE) of biological systems is one of the most challenging problems in Systems Biology. Here we present a PE method that integrates particle swarm optimization (PSO) to estimate the value of kinetic constants, and a stochastic simulation algorithm to reconstruct the dynamics of the system. The fitness of candidate solutions, corresponding to vectors of reaction constants, is defined as the point-to-point distance between a simulated dynamics and a set of experimental measures, carried out using discrete-time sampling and various initial conditions. A multi-swarm PSO topology with different modalities of particles migration is used to account for the different laboratory conditions in which the experimental data are usually sampled. The whole method has been specifically designed and entirely executed on the GPU to provide a reduction of computational costs. We show the effectiveness of our method and discuss its performances on an enzymatic kinetics and a prokaryotic gene expression network.

(M. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri and D. Pescini: “A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series”,  in M. Giacobini, L. Vanneschi, W. Bush, editors, Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, vol. 7246 of LNCS. pp. 74-85, 2012. [DOI])