A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems

May 18th, 2015


As the number of cores on a chip increase and key applications become even more data-intensive, memory systems in modern processors have to deal with increasingly large amount of data. In face of such challenges, data compression presents as a promising approach to increase effective memory system capacity and also provide performance and energy advantages. This paper presents a survey of techniques for using compression in cache and main memory systems. It also classifies the techniques based on key parameters to highlight their similarities and differences. It discusses compression in CPUs and GPUs, conventional and non-volatile memory (NVM) systems, and 2D and 3D memory systems. We hope that this survey will help the researchers in gaining insight into the potential role of compression approach in memory components of future extreme-scale systems.

Sparsh Mittal and Jeffrey Vetter, “A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems”, IEEE TPDS 2015. WWW

A Survey of CPU-GPU Heterogeneous Computing Techniques

May 18th, 2015


As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and application level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). We believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.

Sparsh Mittal and Jeffrey Vetter, “A Survey of CPU-GPU Heterogeneous Computing Techniques”, accepted in ACM Computing Surveys, 2015. WWW

A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

April 22nd, 2015


Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability’ a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. This paper provides a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory (NVM), GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based on their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. We believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.

Sparsh Mittal, Jeffrey S Vetter, “A Survey of Techniques for Modeling and Improving Reliability of Computing Systems”, in IEEE TPDS, 2015. WWW

GPU-Accelerated Inter-Cell Interference Coordination for LTE

April 21st, 2015


To minimize interference in LTE networks, several inter-cell interference coordination (ICIC) techniques have been introduced. Among them, semi-static ICIC offers a balanced trade-off between applicability and system performance. The power allocation per resource block and cell is adapted in the range of seconds according to the load in the system. An open issue in the literature is the question how fast the adaptation should be performed. This leads basically to a trade-off between system performance and feasible computation times of the associated power allocation problems. In this work, we close this open issue by studying the impact that different durations of update times of semi-static ICIC have on the system performance. We conduct our study on realistic scenarios considering also the mobility of mobile terminals. Secondly, we also consider the implementation aspects of a semi-static ICIC. We introduce a very efficient implementation on general purpose graphic processing units, harnessing the parallel computing capability of such devices. We show that the update periods have a significant impact on the performance of cell edge terminals. Additionally, we present a graphic processing unit (GPU) based implementation which speeds up existing implementations up to a factor of 92x.

Parruca, Donald and Aizaz, Fahad and Chantaraskul, Soamsiri and Gross, James. “Semi-static Interference Coordination in OFDMA/LTE Networks: Evaluation of Practical Aspects. In Proceedings of the 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 87-94 2014.

A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

February 11th, 2015


Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper also reviews those techniques which use GPU and FPGA to improve energy efficiency of embedded systems. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow.

Sparsh Mittal, “A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems”, International Journal of Computer Aided Engineering and Technology (IJCAET), vol 6, no. 4, 2014. WWW

MAPS: Optimizing Massively Parallel Applications Using Device-Level Memory Abstraction

February 11th, 2015


GPUs play an increasingly important role in high-performance computing. While developing naive code is straightforward, optimizing massively parallel applications requires deep understanding of the underlying architecture. The developer must struggle with complex index calculations and manual memory transfers. This article classifies memory access patterns used in most parallel algorithms, based on Berkeley’s Parallel “Dwarfs.” It then proposes the MAPS framework, a device-level memory abstraction that facilitates memory access on GPUs, alleviating complex indexing using on-device containers and iterators. This article presents an implementation of MAPS and shows that its performance is comparable to carefully optimized implementations of real-world applications.

Rubin, Eri, et al. ["MAPS: Optimizing Massively Parallel Applications Using Device-Level Memory Abstraction."](http://dl.acm.org/citation.cfm?id=2680544) ACM Transactions on Architecture and Code Optimization (TACO) 11.4 (2014): 44.

[Library website](http://www.cs.huji.ac.il/~talbn/maps/)

A Survey Of Techniques for Managing and Leveraging Caches in GPUs

February 10th, 2015


Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU-GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges of cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.

Sparsh Mittal, “A Survey Of Techniques for Managing and Leveraging Caches in GPUs”, Journal of Circuits, Systems, and Computers (JCSC), vol. 23, no. 8, 2014. WWW

Real-time Deblocked GPU rendering of Compressed Volume Data

December 2nd, 2014


The wide majority of current state-of-the-art compressed GPU volume renderers are based on block-transform coding, which is susceptible to blocking artifacts, particularly at low bit-rates. In this paper the authors address the problem for the first time, by introducing a specialized deferred filtering architecture working on block-compressed data and including a novel deblocking algorithm. The architecture efficiently performs high quality shading of massive datasets by closely coordinating visibility- and resolution-aware adaptive data loading with GPU-accelerated per-frame data decompression, deblocking, and rendering. A thorough evaluation including quantitative and qualitative measures demonstrates the performance of our approach on large static and dynamic datasets including a massive 512^4 turbulence simulation (256GB), which is aggressively compressed to less than 2 GB, so as to fully upload it on graphics board and to explore it in real-time during animation.

(Fabio Marton, José Antonio Iglesias Guitián, Jose Díaz and Enrico Gobbetti: “Real-time deblocked GPU rendering of compressed volumes”. Proc. 19th International Workshop on Vision, Modeling and Visualization (VMV), pp. 167-174, Oct. 2014. [WWW])

Massive exploration of perturbed conditions of the blood coagulation cascade through GPU parallelization

November 3rd, 2014


The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations.

(Cazzaniga P., Nobile M.S., Besozzi D., Bellini M., Mauri G.: “Massive exploration of perturbed conditions of the blood coagulation cascade through GPU parallelization”. BioMed Research International, vol. 2014. [DOI])

Approximate TF–IDF based on topic extraction from massive message stream using the GPU

October 16th, 2014


The Web is a constantly expanding global information space that includes disparate types of data and resources. Recent trends demonstrate the urgent need to manage the large amounts of data stream, especially in specific domains of application such as critical infrastructure systems, sensor networks, log file analysis, search engines and more recently, social networks. All of these applications involve large-scale data-intensive tasks, often subject to time constraints and space complexity. Algorithms, data management and data retrieval techniques must be able to process data stream, i.e., process data as it becomes available and provide an accurate response, based solely on the data stream that has already been provided. Data retrieval techniques often require traditional data storage and processing approach, i.e., all data must be available in the storage space in order to be processed. For instance, a widely used relevance measure is Term Frequency–Inverse Document Frequency (TF–IDF), which can evaluate how important a word is in a collection of documents and requires to a priori know the whole dataset.
To address this problem, we propose an approximate version of the TF–IDF measure suitable to work on continuous data stream (such as the exchange of messages, tweets and sensor-based log files). The algorithm for the calculation of this measure makes two assumptions: a fast response is required, and memory is both limited and infinitely smaller than the size of the data stream. In addition, to face the great computational power required to process massive data stream, we present also a parallel implementation of the approximate TF–IDF calculation using Graphical Processing Units (GPUs).
This implementation of the algorithm was tested on generated and real data stream and was able to capture the most frequent terms. Our results demonstrate that the approximate version of the TF–IDF measure performs at a level that is comparable to the solution of the precise TF–IDF measure.

(Ugo Erra, Sabrina Senatore, Fernando Minnella and Giuseppe Caggianese: “Approximate TF-IDF based on topic extraction from massive message stream using the GPU”, Information Sciences 292, pp.141-163, Feb. 2015. [DOI])

Page 1 of 3812345...102030...Last »