Acceleware OpenCL Training June 2-5, 2014

March 5th, 2014

This hands-on four day course will teach you how to write applications in OpenCL that fully leverage the multi-core processing capabilities of the GPU. Taught by Acceleware developers who bring real world experience to the class room, students will benefit from:

  • Hands-on exercises and progressive lectures
  • Individual laptops with AMD Fusion APU for student use
  • Small class sizes to maximize learning
  • 90 days post training support

For more information please visit: http://acceleware.com/training/1028

PARALUTION – new release 0.6.0

February 26th, 2014

PARALUTION is a library for sparse iterative methods which can be performed on various parallel devices, including multi-core CPU, GPU (CUDA and OpenCL) and Intel Xeon Phi. The new 0.6.0 version provides the following new features:

  • Windows support (OpenMP backend)
  • FGMRES (Flexible GMRES)
  • (R)CMK (Cuthill–McKee) ordering
  • Thread-core affiliation (for Host OpenMP)
  • Asynchronous transfers (CUDA backend)
  • Pinned memory allocation on the host when using CUDA backend
  • Verbose output for debugging
  • Easy to handle timing function in the examples

PARALUTION 0.6.0 is available at http://www.paralution.com.

PyViennaCL: Python wrapper for GPU-accelerated linear algebra

February 26th, 2014

The new free open-source PyViennaCL 1.0.0 release provides the Python bindings for the ViennaCL linear algebra and numerical computation library for GPGPU and heterogeneous systems. ViennaCL itself is a header-only C++ library, so these bindings make available to Python programmers ViennaCL’s fast OpenCL and CUDA algorithms, in a way that is idiomatic and compatible with the Python community’s most popular scientific packages, NumPy and SciPy. Support through the Google Summer of Code 2013 for the primary developer Toby St Clere Smithe is greatly appreciated.

More information and download: PyViennaCL Home

Webinar: Accelerating Full Waveform Inversion via OpenCL on AMD GPUs

February 26th, 2014

On March 5 at 11:00am (PST), Acceleware hosts a webinar on accelerating a seismic algorithm on a cluster of AMD GPU compute nodes. The presentation will begin with an outline of the full waveform inversion (FWI) algorithm, followed by an introduction to OpenCL. The OpenCL programming model and memory spaces will be introduced. Strategies for formulating the problem to take advantage of the massively parallel GPU architecture, and key optimizations techniques are discussed including coalescing and an iterative approach to handle the slices. Performance results for the GPU are compared to the CPU run times. Click here to register.

OpenCLIPP: an OpenCL library for optimized image processing primitives

February 2nd, 2014

OpenCLIPP is a library providing processing primitives (image processing primitives in the first version) implemented with OpenCL for fast execution on dedicated computing devices like GPUs. Two interfaces are provided: C (similar to the Intel IPP and NVIDIA NPP libraries) and C++. OpenCLIPP is free for personal and commercial use. It can be downloaded from GitHub.

Related publication:
M. Akhloufi, A. Campagna, “OpenCLIPP: OpenCL Integrated Performance Primitives library for computer vision applications”, Proc. SPIE Electronic Imaging 2014, Intelligent Robots and Computer Vision XXXI: Algorithms and Techniques, P. 9025-31, February 2014.

Javascript Library for GPGPU

December 30th, 2013

WebCLGL is a free Javascript library for general purpose computing using WebGL. It uses a code style like WebCL to handle the operations and then translate to WebGL code. The library is not 100% the same as the future WebCL specification nor has all its advantages, but it is already very usable.

Linear Algebra Library ViennaCL 1.5.0 released

December 23rd, 2013

The latest release 1.5.0 of the free open source linear algebra library ViennaCL is now available for download. The library provides a high-level C++ API similar to Boost.ublas and aims at providing the performance of accelerators at a high level of convenience without having to deal with hardware details. Some of the highlights from the ChangeLog are as follows: Vectors and matrices of integers are now supported, multiple OpenCL contexts can be used in a fully multi-threaded manner, products of sparse and dense matrices are now available, and certain BLAS functionality is also provided through a shared library for use with programming languages other than C++, e.g. C, Fortran, or Python.

2nd International Workshop on OpenCL

November 28th, 2013

IWOCL (“eye-wok-ul”) is an annual meeting of developers, researchers and suppliers to promote the use, evolution and advancement of the OpenCL parallel programming open standard. IWOCL 2014 will take place in Bristol, England on May 12-13, 2014. For additional information visit http://www.iwocl.org

VexCL 1.0.0 released with CUDA support

November 20th, 2013

VexCL is a modern C++ library created for ease of GPGPU development with C++. VexCL strives to reduce the amount of boilerplate code needed to develop GPGPU applications. The library provides a convenient and intuitive notation for vector arithmetic, reduction, sparse matrix-vector multiplication, etc. The source code is available under the permissive MIT license. As of v1.0.0, VexCL provides two backends: OpenCL and CUDA. Users may choose either of those at compile time with a preprocessor macro definition. More information is available at the GitHub project page and release notes page.

New Versions of AMD CodeXL, Bolt and AMD APP SDK

November 13th, 2013

AMD CodeXL is a free set of tools for GPU debugging, GPU profiling, static analysis of OpenCL kernels, and CPU profiling, including support for remote servers. For more information and download links, see: http://developer.amd.com/community/blog/2013/11/08/codexl-1-3-released/

Bolt is an STL compatible C++ template library for creating data-parallel applications using C++ (no C++ AMP / OpenCL code required). For more information about the Bolt template library and download links, see: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/bolt-c-template-library/

AMD APP SDK has everything needed to get started with OpenCL and parallel programming. It includes OpenCL samples that are very easy to compile, as well as the Bolt and other libraries. For more information about AMD APP SDK and download links, see: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/

Page 1 of 1112345...10...Last »