Towards a complete FEM-based simulation toolkit on GPUs

February 10th, 2012

Abstract:

We describe our FE-gMG solver, a finite element geometric multigrid approach for problems relying on unstructured grids. We augment our GPU- and multicore-oriented implementation technique based on cascades of sparse matrix-vector multiplication by applying strong smoothers. In particular, we employ Sparse Approximate Inverse (SPAI) and Stabilised Approximate Inverse (SAINV) techniques. We focus on presenting the numerical efficiency of our smoothers in combination with low- and high-order finite element spaces as well as the hardware efficiency of the FE-gMG. For a representative problem and computational grids in 2D and 3D, we achieve a speedup of an average of 5 on a single GPU over a multithreaded CPU code in our benchmarks. In addition, our strong smoothers can deliver a speedup of 3-5 depending on the element space, compared to simple Jacobi smoothing. This can even be enhanced to a factor of 7 when combining the usage of Approximate Inverse-based smoothers with clever sorting of the degrees of freedom. In total the FE-gMG solver can outperform a simple, (multicore-)CPU-based multigrid by a total factor of over 40.

(Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac and Stefan Turek: “Towards a complete FEM-based simulation toolkit on GPUs: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses”, accepted for publication in Computers and Fluids, 2011. [preprint])

GPU Implementation of a Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method

September 2nd, 2011

Abstract:

A Helmholtz equation in two dimensions discretized by a second order finite difference scheme is considered. Krylov methods such as Bi-CGSTAB and IDR(s) have been chosen as solvers. Since the convergence of the Krylov solvers deteriorates with increasing wave number, a shifted Laplace multigrid preconditioner is used to improve the convergence. The implementation of the preconditioned solver on CPU (Central Processing Unit) is compared to an implementation on GPU (Graphics Processing Units or graphics card) using CUDA (Compute Unified Device Architecture). The results show that preconditioned Bi-CGSTAB on GPU as well as preconditioned IDR(s) on GPU is about 30 times faster than on CPU for the same stopping criterion.

(H. Knibbe, C.W. Oosterlee and C. Vuik, “GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid method”, accepted for publication in the Journal of Computational and Applied Mathematics, 2011. [DOI])

Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods

August 4th, 2011

Abstract:

Algebraic multigrid methods for large, sparse linear systems are a necessity in many computational simulations, yet parallel algorithms for such solvers are generally decomposed into coarse-grained tasks suitable for distributed computers with traditional processing cores. However, accelerating multigrid on massively parallel throughput-oriented processors, such as the GPU, demands algorithms with abundant fine-grained parallelism. In this paper, we develop a parallel algebraic multigrid method which exposes substantial fine-grained parallelism in both the construction of the multigrid hierarchy as well as the cycling or solve stage. Our algorithms are expressed in terms of scalable parallel primitives that are efficiently implemented on the GPU. The resulting solver achieves an average speedup of over 2x in the setup phase and around 6x in the cycling phase when compared to a representative CPU implementation.

(Nathan Bell, Steven Dalton and Luke Olson: “Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods”, NVIDIA Technical Report NVR-2011-002, June 2011 [PDF and Sources])

Parallel Smoothers for Matrix-based Multigrid Methods on Unstructured Meshes Using Multicore CPUs and GPUs

July 29th, 2011

Abstract:

Multigrid methods are efficient and fast solvers for problems typically modeled by partial differential equations of elliptic type. For problems with complex geometries and local singularities stencil-type discrete operators on equidistant Cartesian grids need to be replaced by more flexible concepts for unstructured meshes in order to properly resolve all problem-inherent specifics and for maintaining a moderate number of unknowns. However, flexibility in the meshes goes along with severe drawbacks with respect to parallel execution – especially with respect to the definition of adequate smoothers. This point becomes in particular pronounced in the framework of fine-grained parallelism on GPUs with hundreds of execution units. We use the approach of matrix-based multigrid that has high flexibility and adapts well to the exigences of modern computing platforms.

In this work we investigate multi-colored Gauss-Seidel type smoothers, the power(q)-pattern enhanced multi-colored ILU(p) smoothers with fill-ins, and factorized sparse approximate inverse (FSAI) smoothers. These approaches provide efficient smoothers with a high degree of parallelism. In combination with matrix-based multigrid methods on unstructured meshes our smoothers provide powerful solvers that are applicable across a wide range of parallel computing platforms and almost arbitrary geometries. We describe the configuration of our smoothers in the context of the portable lmpLAtoolbox and the HiFlow3 parallel finite element package. In our approach, a single source code can be used across diverse platforms including multicore CPUs and GPUs. Highly optimized implementations are hidden behind a unified user interface. Efficiency and scalability of our multigrid solvers are demonstrated by means of a comprehensive performance analysis on multicore CPUs and GPUs.

V. Heuveline, D. Lukarski, N. Trost and J.-P. Weiss. Parallel Smoothers for Matrix-based Multigrid Methods on Unstructured Meshes Using Multicore CPUs and GPUs. EMCL Preprint Series No. 9. 2011.