A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

February 11th, 2015


Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper also reviews those techniques which use GPU and FPGA to improve energy efficiency of embedded systems. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow.

Sparsh Mittal, “A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems”, International Journal of Computer Aided Engineering and Technology (IJCAET), vol 6, no. 4, 2014. WWW

A high throughput efficient approach for decoding LDPC codes onto GPU devices

April 16th, 2014


LDPC decoding process is known as compute intensive. This kind of digital communication applications was recently implemented onto GPU devices for LDPC code performance estimation and/or for real-time measurements. Overall previous studies about LDPC decoding on GPU were based on the implementation of the flooding-based decoding algorithm that provides massive computation parallelism. More efficient layered schedules were proposed in literature because decoder iteration can be split into sub-layer iterations. These schedules seem to badly fit onto GPU devices due to restricted computation parallelism and complex memory access patterns. However, the layered schedules enable the decoding convergence to speed up by two. In this letter, we show that (a) layered schedule can be efficiently implemented onto a GPU device (b) this approach – implemented onto a low-cost GPU device – provides higher throughputs with identical correction performances (BER) compared to previously published results.

(B. Le Gal, C. J├ęgo and J. Crenne: “An high-throughput efficiency approach for GPU-based LDPC decoding”. IEEE Embedded System Letters, March 2014. [DOI])