
Aaron LefohnAaron Lefohn
University of California, DavisUniversity of California, Davis

GPU Memory Model OverviewGPU Memory Model Overview



OverviewOverview

• GPU Memory Model
• GPU Data Structure Basics
• Introduction to Framebuffer Objects



3

Memory HierarchyMemory Hierarchy

• CPU and GPU Memory Hierarchy

Disk

CPU Main 
Memory

GPU Video 
MemoryCPU Caches

CPU Registers GPU Caches

GPU Temporary 
Registers

GPU Constant 
Registers



4

CPU Memory ModelCPU Memory Model

• At any program point
– Allocate/free local or global memory
– Random memory access

• Registers
– Read/write

• Local memory
– Read/write to stack

• Global memory
– Read/write to heap

• Disk
– Read/write to disk



5

GPU Memory ModelGPU Memory Model

• Much more restricted memory access
– Allocate/free memory only before computation
– Limited memory access during computation (kernel)

• Registers
– Read/write

• Local memory
– Does not exist

• Global memory
– Read-only during computation
– Write-only at end of computation (precomputed address)

• Disk access
– Does not exist



GPU Memory ModelGPU Memory Model

• Where is GPU Data Stored?
– Vertex buffer
– Frame buffer
– Texture

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



7

GPU Memory APIGPU Memory API

• Each GPU memory type supports subset of 
the following operations
– CPU interface
– GPU interface



8

GPU Memory APIGPU Memory API

• CPU interface
– Allocate
– Free
– Copy CPU GPU
– Copy GPU CPU
– Copy GPU GPU
– Bind for read-only vertex stream access
– Bind for read-only random access
– Bind for write-only framebuffer access



9

GPU Memory APIGPU Memory API

• GPU (shader/kernel) interface
– Random-access read
– Stream read



Vertex BuffersVertex Buffers

• GPU memory for vertex data
• Vertex data required to initiate render pass

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



11

Vertex BuffersVertex Buffers

• Supported Operations
– CPU interface

• Allocate
• Free
• Copy CPU GPU
• Copy GPU GPU (Render-to-vertex-array)
• Bind for read-only vertex stream access

– GPU interface
• Stream read (vertex program only)



12

Vertex BuffersVertex Buffers

• Limitations
– CPU

• No copy GPU CPU
• No bind for read-only random access
• No bind for write-only framebuffer access

– ATI supported this in uberbuffers. Perhaps we’ll see this as 
an OpenGL extension?

– GPU
• No random-access reads
• No access from fragment programs



TexturesTextures

• Random-access GPU memory

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



14

TexturesTextures

• Supported Operations
– CPU interface

• Allocate
• Free
• Copy CPU GPU
• Copy GPU CPU
• Copy GPU GPU (Render-to-texture)
• Bind for read-only random access (vertex or fragment)
• Bind for write-only framebuffer access

– GPU interface
• Random read



15

TexturesTextures

• Limitations
– No bind for vertex stream access



FramebufferFramebuffer

• Memory written by fragment processor
• Write-only GPU memory

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



17

OpenGL OpenGL FramebufferFramebuffer ObjectsObjects

• General idea
– Framebuffer object is lightweight struct of pointers
– Bind GPU memory to framebuffer as write-only
– Memory cannot be read while bound to framebuffer

• Which memory? 
– Texture
– Renderbuffer
– Vertex buffer??

Texture
(RGBA)

Renderbuffer
(Depth)

Framebuffer
Object



18

FramebufferFramebuffer ObjectObject

• New OpenGL extension
– Enables true render-to-texture in OpenGL
– Mix-and-match depth/stencil buffers
– Replaces pbuffers!
– More details coming later in talk…

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt



19

What is a What is a RenderbufferRenderbuffer??

• “Traditional” framebuffer memory 
– Write-only GPU memory

• Color buffer
• Depth buffer
• Stencil buffer

• New OpenGL memory object
– Part of Framebuffer Object extension



20

RenderbufferRenderbuffer

• Supported Operations
– CPU interface

• Allocate
• Free
• Copy GPU CPU
• Bind for write-only framebuffer access



21

Pixel Buffer ObjectsPixel Buffer Objects

• Mechanism to efficiently transfer pixel data
– API nearly identical to vertex buffer objects

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



22

Pixel Buffer ObjectsPixel Buffer Objects

• Uses
– Render-to-vertex-array

• glReadPixels into GPU-based pixel buffer
• Use pixel buffer as vertex buffer

– Fast streaming textures
• Map PBO into CPU memory space
• Write directly to PBO
• Reduces one or more copies



23

Pixel Buffer ObjectsPixel Buffer Objects

• Uses (continued)
– Asynchronous readback

• Non-blocking GPU CPU data copy
• glReadPixels into PBO does not block
• Blocks when PBO is mapped into CPU memory



Summary : RenderSummary : Render--toto--TextureTexture

• Basic operation in GPGPU apps

• OpenGL Support
– Save up to 16, 32-bit floating values per pixel

• Multiple Render Targets (MRTs) on ATI and NVIDIA

1. Copy-to-texture
• glCopyTexSubImage

2. Render-to-texture
• GL_EXT_framebuffer_object



25

Summary : RenderSummary : Render--ToTo--VertexVertex--ArrayArray

• Enable top-of-pipe feedback loop

• OpenGL Support
– Copy-to-vertex-array

• GL_ARB_pixel_buffer_object
• NVIDIA and ATI

– Render-to-vertex-array
• Maybe future extension to framebuffer objects 



26

OverviewOverview

• GPU Memory Model
• GPU Data Structure Basics
• Introduction to Framebuffer Objects



27

GPU Data Structure BasicsGPU Data Structure Basics

• Summary of “Implementing Efficient Parallel 
Data Structures on GPUs”
– Chapter 33, GPU Gems II

• Low-level details
– The “Glift” talk described high-level view of GPU 

data structures

• Now for the gory details…



28

GPU ArraysGPU Arrays

• Large 1D Arrays
– Current GPUs limit 1D array sizes to 2048 or 4096
– Pack into 2D memory
– 1D-to-2D address translation



29

GPU ArraysGPU Arrays

• 3D Arrays
– Problem

• GPUs do not have 3D frame buffers
• No render-to-slice-of-3D-texture yet (coming soon?)

– Solutions
1. Stack of 2D slices
2. Multiple slices per 2D buffer



30

GPU ArraysGPU Arrays

• Problems With 3D Arrays for GPGPU
– Cannot read stack of 2D slices as 3D texture
– Must know which slices are needed in advance
– Visualization of 3D data difficult

• Solutions
– Flat 3D textures
– Need render-to-slice-of-3D-texture 

– Maybe with GL_EXT_framebuffer_object

– Volume rendering of flattened 3D data
– “Deferred Filtering: Rendering from Difficult Data Formats,”

GPU Gems 2, Ch. 41, p. 667



31

GPU ArraysGPU Arrays

• Higher Dimensional Arrays
– Pack into 2D buffers
– N-D to 2D address translation
– Same problems as 3D arrays if data does not fit in a 

single 2D texture



32

Sparse/Adaptive Data StructuresSparse/Adaptive Data Structures
• Why?

– Reduce memory pressure
– Reduce computational workload

• Examples
– Sparse matrices

• Krueger et al., Siggraph 2003
• Bolz et al., Siggraph 2003

– Deformable implicit surfaces (sparse volumes/PDEs)
• Lefohn et al., IEEE Visualization 2003 / TVCG 2004

– Adaptive radiosity solution (Coombe et al.)

Premoze et al.
Eurographics 2003



33

Sparse/Adaptive Data StructuresSparse/Adaptive Data Structures
• Basic Idea

– Pack “active” data elements into GPU memory
– For more information

• Owens et al., GPGPU Eurographics 2005 STAR Report
• Lefohn et al., “Glift : Generic, Efficient, Random-Access GPU 

Data Structures,” Transactions on Graphics, To Appear, 2005



34

GPU Data StructuresGPU Data Structures

• Conclusions
– Fundamental GPU memory primitive is a fixed-size 

2D array

– GPGPU needs more general memory model

– Building and modifying complex GPU-based data 
structures is an open research topic…



35

OverviewOverview

• GPU Memory Model
• GPU-Based Data Structures
• Introduction to Framebuffer Objects



36

Introduction to Introduction to FramebufferFramebuffer ObjectsObjects

• Where is the “Pbuffer Survival Guide”?
– Gone!!!
– Framebuffer objects replace pbuffers
– Simple, intuitive, fast render-to-texture in OpenGL

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt



37

FramebufferFramebuffer ObjectsObjects

• What is an FBO?
– A struct that holds pointers to memory objects
– Each bound memory object can be a 

framebuffer rendering surface
– Platform-independent

Texture
(RGBA)

Renderbuffer
(Depth)

Framebuffer
Object



38

FramebufferFramebuffer ObjectsObjects

• Which memory can be bound to an FBO?
– Textures
– Renderbuffers

• Depth, stencil, color
• Traditional write-only framebuffer surfaces



39

FramebufferFramebuffer ObjectsObjects

• Usage models
– Keep N textures bound to one FBO (up to 16)

• Change render targets with glDrawBuffers

– Keep one FBO for each size/format
• Change render targets with attach/unattach textures

– Keep several FBOs with textures attached
• Change render targets by binding FBO



40

FramebufferFramebuffer ObjectsObjects

• Performance
– Render-to-texture

• glDrawBuffers is fastest on NVIDIA/ATI
– As-fast or faster than pbuffers

• Attach/unattach textures same as changing FBOs
– Slightly slower than glDrawBuffers but faster than 

wglMakeCurrent

• Keep format/size identical for all attached memory
– Current driver limitation, not part of spec

– Readback
• Same as pbuffers for NVIDIA and ATI



41

FramebufferFramebuffer ObjectsObjects

• Driver support still evolving
– GPUBench FBO tests coming soon…
– fbocheck.exe evalulates completeness 



42

FramebufferFramebuffer ObjectObject

• Code examples
– Simple C++ FBO and Renderbuffer classes

• HelloWorld example
• http://gpgpu.sourceforge.net/

– OpenGL Spec
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt



43

ConclusionsConclusions

• GPU Memory Model Evolving
– Writable GPU memory forms loop-back in an otherwise 

feed-forward streaming pipeline
– Memory model will continue to evolve as GPUs become 

more general data-parallel processors

• GPGPU Data Structures
– Basic memory primitive is limited-size, 2D texture
– Use address translation to fit all array dimensions into 2D
– See “Glift” talk for higher-level GPU data structures



44

AcknowledgementsAcknowledgements

• Adam Moerschell, Shubho Sengupta, UCDavis
• Mike Houston, Stanford University

• Nick Triantos, Craig Kolb, Cass Everitt, Chris Seitz, NVIDIA
• Mark Segal, Rob Mace, Arcot Preetham, Evan Hart, ATI

• John Owens, Ph.D. advisor, Univ. of California Davis
• National Science Foundation Graduate Fellowship



45

Questions?Questions?

• Thank you!
• Google “Lefohn GPU”

– http://graphics.cs.ucdavis.edu/~lefohn/


