A Data-Parallel Genealogy: The GPU Family Tree

John Owens
University of California, Davis
Outline

• Moore’s Law brings opportunity
 – Gains in performance …
 – … and capabilities.
 – What has 20+ years of development brought us?

• How can we use those transistors?
 – Microprocessors?
 – Stream processors
 • Today’s commodity stream processor: the GPU
The past: 1987

20 MIPS CPU
1987

[courtesy Anant Agarwal]
The future: 2007

1 Billion Transistors
2007

[courtesy Anant Agarwal]
Today’s VLSI Capability

64-bit FPU (to scale)
50pJ/FLOP

1 clock

90nm Chip
$200
1GHz

0.5mm
12mm

[courtesy Pat Hanrahan]
Today’s VLSI Capability

- Exploits Ample Computation!

64-bit FPU
(to scale)

1. Exploits Ample Computation!

90nm Chip
$200
1GHz

1 clock

0.5mm

12mm

[courtesy Pat Hanrahan]
Today’s VLSI Capability

1. Exploits Ample Computation!

2. Requires Efficient Communication!

[90nm Chip
$200
1GHz]

[64-bit FPU
(to scale)]

[1 clock]

[0.5mm]

[12mm]

[courtesy Pat Hanrahan]
NVIDIA Historicals

![Graph showing historical data for NVIDIA, with lines for Fill Rate and Geometry Rate over production dates from July 1996 to July 2004.](image)
GPU History: Features

- **< 1982**
- **1982-87**
- **1987-92**
- **1992-2000**
- **2000-**
Outline

• Moore’s Law brings opportunity
 – Gains in performance …
 – … and capabilities.
 – What has 20+ years of development brought us?

• How can we use those transistors?
 – Microprocessors?
 – Stream processors
 • Today’s commodity stream processor: the GPU
Characteristics of Graphics Apps

- Lots of arithmetic
- Lots of parallelism
- Simple control
- Multiple stages
- Feed forward pipelines
- Latency-tolerant / deep pipelines

- What other applications have these characteristics?
Microprocessors: A Solution?

• Microprocessors address a different application space
 – Scalar programming model with no native data parallelism
 • Excel at control-heavy tasks
 • Not so good at data-heavy, regular applications
 – Few arithmetic units – little area
 – Optimized for low latency not high bandwidth

• Maybe the scalar processing model isn’t the best fit
Stream Programming Abstraction

- Let’s think about our problem in a new way
- Streams
 - Collection of data records
 - All data is expressed in streams
- Kernels
 - Inputs/outputs are streams
 - Perform computation on streams
 - Can be chained together
Why Streams?

- Ample computation by exposing parallelism
 - Streams expose data parallelism
 - Multiple stream elements can be processed in parallel
 - Pipeline (task) parallelism
 - Multiple tasks can be processed in parallel
 - Kernels yield high arithmetic intensity

- Efficient communication
 - Producer-consumer locality
 - Predictable memory access pattern
 - Optimize for throughput of all elements, not latency of one
 - Processing many elements at once allows latency hiding
Taxonomy of Streaming Processors

• In common:
 – Exploit parallelism for high computation rate
 • Each stage processes many items in parallel (d.p.)
 • Several stages can run at the same time (t.p.)
 – Efficient communication
 • Minimize memory traffic
 • Optimized memory system

• What’s different?
 – Mapping of processing units to tasks in graphics pipeline
Stream Processors

- Fewer processing units than tasks
 - “Time multiplexed” organization
 - Each stage fully programmable

- Stanford Imagine
 - 32b stream processor for image, signal, and graphics processing (2001)

- Stanford Merrimac
 - 64b stream processor for scientific computing (2004)
 - Core of Stanford Streaming Supercomputer

- Challenge:
 - Efficiently mapping all tasks to one processing unit - no specialization
MIT RAW: Tiled Processor Architecture

- More processing units than tasks
 - MIT RAW, IBM Cell
- Each tile is programmable
 - Streams connect tiles
- “Task parallel” organization
- Lots of ALUs and registers
- Short, programmable wires
- Challenge: Software support

[courtesy Anant Agarwal]
Cell

• **By the numbers:**
 – 4 GHz
 – 256 GFLOPS (32b FP)
 – 25.6 GB/s memory BW
 – 234M transistors

• **Architecture**
 – 1 Power core (scalar)
 – 8 SPEs (128b SIMD)

• **Challenge**
 – Software support

http://www.realworldtech.com/includes/images/articles/cell-1.gif
GPU: Special-Purpose Graphics Hardware

Task-parallel organization
Assign each task to processing unit
Hardwire each unit to specific task - huge performance advantage!
Provides ample computation resources
Efficient communication patterns
Dominant graphics architecture

[ATI Flipper – 51M T]
Today’s Graphics Pipeline

- Graphics is well suited to:
 - The stream programming model
 - Stream hardware organizations
 - GPUs are a commodity stream processor!
- What if we could apply these techniques to more general-purpose problems?
 - GPUs should excel at tasks that require ample computation and efficient communication.
- What’s missing?
The Programmable Pipeline

Application → Command → Geometry → Rasterization → Fragment → Composite → Display

[GeForce 6800, courtesy NVIDIA]
Conclusions

• **Adding programmability to GPUs is exciting!**
 – Confluence: Lots of computation; expertise in harnessing that computation; commodity production; programmability
 – GPUs have great performance
 • Computation & communication
 – Programmability allows them to address many interesting problems

• **Many challenges remain …**
 – Algorithms, programming models, architecture, languages, tools …

• **Next stop:**
 – “The GPGPU Programming Model”