GPU Memory Model Overview

John Owens

University of California, Davis
A)epartment of Electrical and Computer Engineering
.0 L Institute for Data Analysis and Visualization

% SciDAC Institute for Ultrascale Visualization

(c14GPU

SC

Memory Hierarchy

6

e CPU and GPU Memory Hierarchy

CPU Main

Memory h
CPU Caches G el

Memory

CPU Registers GPU Caches

GPU Constant GPU Temporary
Registers Registers

SCN4
CPU Memory Model .

e At any program point
- Allocate/free local or global memory

- Random memory access
e Registers
- Read/write

e Local memory
- Read/write to stack

e Global memory
- Read/write to heap

e Disk
- Read/write to disk

[1:kGPU

SCN6
Cell
e SPU memory model:

e 128 128b local registers

e 256 kB local store BT
- 6 cycles access time o Eii o b B
e Explicit, asynchronous L n' u jhe e

% b

uff

DMA access to main e

memory AR e
- Allows comm/comp overlap [g &7 Fiseel

|

e

i [l AR & e
R e ==Hirii
il

e No explicit | or D cache |fifmait s [[0
® NO diSk acceSS http://www.realworldtech.com/includes/images/articles/cell-1.gif

[€I4GPU ;

SCN6
GPU Memory Model

e Much more restricted memory access
- Allocate/free memory only before computation

- Limited memory access during computation (kernel)
e Registers
- Read/write

e Local memory
- Does not exist

e Global memory
- Read-only during computation
- Write-only at end of computation (precomputed address)

e Disk access
- Does not exist

[1:kGPU

GPU Memory Model e
e GPUs support many types of memory objects
In hardware
- 1D, 2D, 3D grids
e 2D Is most common (framebuffer, texture)
- 2D cube maps (6 faces of a cube)

- Mipmapped (prefiltered) versions
- DX10 adds arrayed datatypes

e Each native datatype has pros and cons from
a general-purpose programming perspective

[1:kGPU

. L SCN6
Traditional GPU Pipeline =

e |[nputs:
- Vertex data
- Texture data
e Qutput:
- Framebuffer

Vertex : Fragment
Vertex Buffer processor R@sterizer o Cccor Frame
Buffer(s)

[1:GPU

SCN6
GPU Memory Model (DX9) "

e Extending memory functionality
- Copy from framebuffer to texture
- Texture reads from vertex processor

- Render tovertex ...
buffer § VS 3.0 GPUs g............. 11111717777 <....

.

Frame

Vertex Fragment

Vertex Buffer Processor asterizer Processor

GPU Memory Model (DX10, tradltlonaI)

e More flexible memory handling
- All programmable units can read texture
- “Stream out” after geometry processor

—
Stream Arrayed
Out
Texture
252 >

Rasterizer Fragment Arrayed
Frame
Buffer(s

Vertex

Vertex Geometry
Buffer Processor Processor Processor

SCN6
GPU Memory Model (DX10, new) =

e DX10 provides “resources”
e Resources are flexible!

Vertex Geometry : Fragment
Rasterizer
Processor Processor Processor

[1:GPU

SCN6
GPU Memory API N

e FEach GPU memory type supports subset of
the following operations
- CPU iInterface
- GPU iInterface

[€14GPU 1

GPU Memory API VEo
e CPU Interface

- Allocate

- Free

- Copy CPU - GPU

- Copy GPU - CPU

- Copy GPU - GPU

- Bind for read-only vertex stream access

- Bind for read-only random access
- Bind for write-only framebuffer access

[1:kGPU

GPU Memory API

SC6

e GPU (shader/kernel) interface

- Random-access read
- Stream read

[1:kGPU

13

. SCD
DX10 View of Memory >4

Resources

e Resources
- Encompass buffers and textures
- Retained state is stored In resources

- Must be bound by API to pipeline stages before called

e Same subresource cannot be bound for both read and write
simultaneously

mG PU 14

DX10 View of Memory

SCN6

Resources

Textures

Views

e Buffers
- Collection of elements

e Few requirements on type or format (heterogeneous)
e Elements are 1-4 components (e.g. R8BG8BBAS, 8b int, 4x32b float)

- No filtering, subresourcing, multisampling
- Layout effectively linear (““‘casting” is possible)

- Examples: vertex buffers, index buffers, ConstantBuffers

[1:kGPU

15

. SCD
DX10 View of Memory >4

Resources

e Textures
- Collection of texels
- Can be filtered, subresourced, arrayed, mipmapped
- Unlike buffers, must be declared with texel type
e Type impacts filtering
- Layout is opaque - enables memory layout optimization
- Examples: texture{l,2,3}d, mipmapped, cubemap

[€1XGPU .

DX10 View of Memory

SCN6

Resources

Textures

Views

e \iews

- “mechanism for hardware interpretation of a

resource in memory”
- Allows structured access of subresources
- Restricting view may increase efficiency

[1:kGPU

17

. SC6
Big Picture: GPU Memory Model

e GPUs are a mix of:
- Historical, fixed-function capabilities
- Newer, flexible, programmable capabilities

e Fixed-function:
- Known access patterns, behaviors
- Accelerated by special-purpose hardware

e Programmable:
- Unknown access patterns
- Generality good
e Memory model must account for both

- Consequence: Ample special-purpose functionality
- Conseqguence: Restricting flexibility may improve performance

[1:kGPU

DX10 Bind Rules

Shader Constants: Must

Shader Resource Input: be created as shader
Anything, but can only constant, ca_n tuse In
bind views other views

[]/]]]] /]
[/ 7]]] /]
L[] 7] 7]]]]]

Input f

Assembler:
Buffers

Depth/Stencil Output:

not buffers/texture3D,

only can bind views of
other resources

Vertex Geometry
Processor Processor Processor

Rasterizer Fragment

StreamOut:
/ Buffers

[[4GPU

L L]

Render Target Output:
Anything, but can only
bind views

SCN6
Example: Texture y

e Texture mapping fundamental primitive in GPUs

e Most typical use: random access, bound for read
only, 2D texture map
- Hardware-supported caching & filtering

.

Vertex : Fragment
Vertex Buffer processor R@sterizer o Cccor Frame
Buffer(s)

[€1XGPU 20

Example: Framebuffer y

e Memory written by fragment processor

e Write-only GPU memory (from shader’s point of
view)
- FB Is read-modify-write by the pipeline as a whole

e Displayed to screen

e Can also store GPGPU results (not just color)

-

Vertex : Fragment
Vertex Buffer processor R@sterizer o Cccor Frame
Buffer(s)

[€14GPU 2

SCN6
Example: Render to Texture N

e Very common in both graphics & GPGPU

e Allows multipass algorithms
- Pass 1: Write data into framebuffer

- Pass 2: Bind as texture, read from
texture

e Store up to 32 32b FP values/pixel

>

Rasterizer [ragment Frame
Buffer(s)

Vertex
Vertex Buffer processor Processor

[€14GPU 2

SCN6

Example: Render to Vertex Array

e FNna

nles top-of-pipe feedback loop

e Enables dynamic creation of geometry on
GPU
o—
Vertex BUffer procecsor Reterizer p 08l Frame

Buffer(s)

[€1XGPU 2

CN6
Example: Stream Out to Vertex Buf()fer"
e Enabled by DX10 StreamOut capability

e Expected to be used for dynamic geometry
- Recall geometry processor produces 0-n outputs per

Input
e Possible graphics applications:
- Expand point sprites
- Extrude silhouettes
- Extrude prisms/tets /

Vertex

Vertex Geometry
Buffer Processor Processor

[1:kGPU

SCD6
Summary

e Rich set of hardware primitives

- Designed for special purpose tasks, but often useful
for general purpose ones

e Memory usage generally more restrictive
than other processors
- Becoming more general-purpose and orthogonal

e Restricting generality allows hw/sw to
cooperate for higher performance

[1:kGPU

