
John OwensJohn Owens
University of California, DavisUniversity of California, Davis

Department of Electrical and Computer EngineeringDepartment of Electrical and Computer Engineering
InstituteInstitute for Data Analysis and Visualizationfor Data Analysis and Visualization
SciDAC SciDAC Institute for Institute for Ultrascale Ultrascale VisualizationVisualization

GPU Memory Model OverviewGPU Memory Model Overview



2

Memory HierarchyMemory Hierarchy

• CPU and GPU Memory Hierarchy

Disk

CPU Main 
Memory

GPU Video 
MemoryCPU Caches

CPU Registers GPU Caches

GPU Temporary 
Registers

GPU Constant 
Registers



3

CPU Memory ModelCPU Memory Model

• At any program point
– Allocate/free local or global memory
– Random memory access

• Registers
– Read/write

• Local memory
– Read/write to stack

• Global memory
– Read/write to heap

• Disk
– Read/write to disk



4

http://www.realworldtech.com/includes/images/articles/cell-1.gif

CellCell

• SPU memory model:
• 128 128b local registers
• 256 kB local store

– 6 cycles access time

• Explicit, asynchronous 
DMA access to main 
memory
– Allows comm/comp overlap

• No explicit I or D cache
• No disk access



5

GPU Memory ModelGPU Memory Model

• Much more restricted memory access
– Allocate/free memory only before computation
– Limited memory access during computation (kernel)

• Registers
– Read/write

• Local memory
– Does not exist

• Global memory
– Read-only during computation
– Write-only at end of computation (precomputed address)

• Disk access
– Does not exist



6

GPU Memory ModelGPU Memory Model

• GPUs support many types of memory objects 
in hardware
– 1D, 2D, 3D grids

• 2D is most common (framebuffer, texture)

– 2D cube maps (6 faces of a cube)
– Mipmapped (prefiltered) versions
– DX10 adds arrayed datatypes

• Each native datatype has pros and cons from 
a general-purpose programming perspective



Traditional GPU PipelineTraditional GPU Pipeline

• Inputs:
– Vertex data
– Texture data

• Output:
– Framebuffer

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)



GPU Memory Model (DX9)GPU Memory Model (DX9)

• Extending memory functionality
– Copy from framebuffer to texture
– Texture reads from vertex processor
– Render to vertex

buffer

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



GPU Memory Model (DX10, traditional)GPU Memory Model (DX10, traditional)

• More flexible memory handling
– All programmable units can read texture
– “Stream out” after geometry processor

Vertex 
Buffer

Geometry 
Processor Rasterizer Fragment

Processor

Arrayed
Texture

Arrayed
Frame

Buffer(s)

Vertex 
Processor

Stream
Out



GPU Memory Model (DX10, new)GPU Memory Model (DX10, new)

• DX10 provides “resources”
• Resources are flexible!

Geometry 
Processor Rasterizer Fragment

Processor
Vertex 

Processor

DX10
Resources



11

GPU Memory APIGPU Memory API

• Each GPU memory type supports subset of 
the following operations
– CPU interface
– GPU interface



12

GPU Memory APIGPU Memory API

• CPU interface
– Allocate
– Free
– Copy CPU GPU
– Copy GPU CPU
– Copy GPU GPU
– Bind for read-only vertex stream access
– Bind for read-only random access
– Bind for write-only framebuffer access



13

GPU Memory APIGPU Memory API

• GPU (shader/kernel) interface
– Random-access read
– Stream read



14

Views

DX10 View of MemoryDX10 View of Memory

• Resources
– Encompass buffers and textures
– Retained state is stored in resources
– Must be bound by API to pipeline stages before called

• Same subresource cannot be bound for both read and write 
simultaneously

Resources

TexturesBuffers



15

Views

DX10 View of MemoryDX10 View of Memory

• Buffers
– Collection of elements

• Few requirements on type or format (heterogeneous)
• Elements are 1-4 components (e.g. R8G8B8A8, 8b int, 4x32b float)

– No filtering, subresourcing, multisampling
– Layout effectively linear (“casting” is possible)
– Examples: vertex buffers, index buffers, ConstantBuffers

Resources

TexturesBuffers



16

Views

DX10 View of MemoryDX10 View of Memory

• Textures
– Collection of texels
– Can be filtered, subresourced, arrayed, mipmapped
– Unlike buffers, must be declared with texel type

• Type impacts filtering

– Layout is opaque - enables memory layout optimization 
– Examples: texture{1,2,3}d, mipmapped, cubemap

Resources

TexturesBuffers



17

Views

DX10 View of MemoryDX10 View of Memory

• Views
– “mechanism for hardware interpretation of a 

resource in memory”
– Allows structured access of subresources
– Restricting view may increase efficiency

Resources

TexturesBuffers



18

Big Picture: GPU Memory ModelBig Picture: GPU Memory Model

• GPUs are a mix of:
– Historical, fixed-function capabilities
– Newer, flexible, programmable capabilities

• Fixed-function:
– Known access patterns, behaviors
– Accelerated by special-purpose hardware

• Programmable:
– Unknown access patterns
– Generality good

• Memory model must account for both
– Consequence: Ample special-purpose functionality
– Consequence: Restricting flexibility may improve performance



DX10 Bind RulesDX10 Bind Rules

Geometry 
Processor Rasterizer Fragment

Processor
Vertex 

Processor

Input 
Assembler: 

Buffers

StreamOut:
Buffers

Shader Resource Input: 
Anything, but can only 

bind views

Render Target Output: 
Anything, but can only 

bind views

Shader Constants: Must 
be created as shader 
constant, can’t use in 

other views

Depth/Stencil Output: 
not buffers/texture3D, 
only can bind views of 

other resources



20

Example: TextureExample: Texture

• Texture mapping fundamental primitive in GPUs
• Most typical use: random access, bound for read 

only, 2D texture map
– Hardware-supported caching & filtering

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)



21

Example: Example: FramebufferFramebuffer
• Memory written by fragment processor
• Write-only GPU memory (from shader’s point of 

view)
– FB is read-modify-write by the pipeline as a whole

• Displayed to screen
• Can also store GPGPU results (not just color)

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor Frame
Buffer(s)



22

Example: Render to TextureExample: Render to Texture

• Very common in both graphics & GPGPU
• Allows multipass algorithms

– Pass 1: Write data into framebuffer
– Pass 2: Bind as texture, read from

texture

• Store up to 32 32b FP values/pixel

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)



23

Example: Render to Vertex ArrayExample: Render to Vertex Array

• Enables top-of-pipe feedback loop
• Enables dynamic creation of geometry on 

GPU

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor Frame
Buffer(s)



24

Example: Stream Out to Vertex BufferExample: Stream Out to Vertex Buffer

• Enabled by DX10 StreamOut capability
• Expected to be used for dynamic geometry

– Recall geometry processor produces 0-n outputs per 
input

• Possible graphics applications:
– Expand point sprites
– Extrude silhouettes
– Extrude prisms/tets

Vertex 
Buffer

Geometry 
Processor

Vertex 
Processor

Stream
Out



SummarySummary

• Rich set of hardware primitives
– Designed for special purpose tasks, but often useful 

for general purpose ones

• Memory usage generally more restrictive 
than other processors
– Becoming more general-purpose and orthogonal

• Restricting generality allows hw/sw to 
cooperate for higher performance


