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Memory HierarchyMemory Hierarchy

• CPU and GPU Memory Hierarchy

Disk

CPU Main 
Memory

GPU Video 
MemoryCPU Caches

CPU Registers GPU Caches

GPU Temporary 
Registers

GPU Constant 
Registers
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CPU Memory ModelCPU Memory Model

• At any program point
– Allocate/free local or global memory
– Random memory access

• Registers
– Read/write

• Local memory
– Read/write to stack

• Global memory
– Read/write to heap

• Disk
– Read/write to disk
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CellCell

• SPU memory model:
• 128 128b local registers
• 256 kB local store

– 6 cycles access time

• Explicit, asynchronous 
DMA access to main 
memory
– Allows comm/comp overlap

• No explicit I or D cache
• No disk access
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GPU Memory ModelGPU Memory Model

• Much more restricted memory access
– Allocate/free memory only before computation
– Limited memory access during computation (kernel)

• Registers
– Read/write

• Local memory
– Does not exist

• Global memory
– Read-only during computation
– Write-only at end of computation (precomputed address)

• Disk access
– Does not exist
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GPU Memory ModelGPU Memory Model

• GPUs support many types of memory objects 
in hardware
– 1D, 2D, 3D grids

• 2D is most common (framebuffer, texture)

– 2D cube maps (6 faces of a cube)
– Mipmapped (prefiltered) versions
– DX10 adds arrayed datatypes

• Each native datatype has pros and cons from 
a general-purpose programming perspective



Traditional GPU PipelineTraditional GPU Pipeline

• Inputs:
– Vertex data
– Texture data

• Output:
– Framebuffer

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)



GPU Memory Model (DX9)GPU Memory Model (DX9)

• Extending memory functionality
– Copy from framebuffer to texture
– Texture reads from vertex processor
– Render to vertex

buffer

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)

VS 3.0 GPUs



GPU Memory Model (DX10, traditional)GPU Memory Model (DX10, traditional)

• More flexible memory handling
– All programmable units can read texture
– “Stream out” after geometry processor

Vertex 
Buffer

Geometry 
Processor Rasterizer Fragment

Processor

Arrayed
Texture

Arrayed
Frame

Buffer(s)

Vertex 
Processor

Stream
Out



GPU Memory Model (DX10, new)GPU Memory Model (DX10, new)

• DX10 provides “resources”
• Resources are flexible!

Geometry 
Processor Rasterizer Fragment

Processor
Vertex 

Processor

DX10
Resources
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GPU Memory APIGPU Memory API

• Each GPU memory type supports subset of 
the following operations
– CPU interface
– GPU interface
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GPU Memory APIGPU Memory API

• CPU interface
– Allocate
– Free
– Copy CPU GPU
– Copy GPU CPU
– Copy GPU GPU
– Bind for read-only vertex stream access
– Bind for read-only random access
– Bind for write-only framebuffer access
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GPU Memory APIGPU Memory API

• GPU (shader/kernel) interface
– Random-access read
– Stream read
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Views

DX10 View of MemoryDX10 View of Memory

• Resources
– Encompass buffers and textures
– Retained state is stored in resources
– Must be bound by API to pipeline stages before called

• Same subresource cannot be bound for both read and write 
simultaneously

Resources

TexturesBuffers
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Views

DX10 View of MemoryDX10 View of Memory

• Buffers
– Collection of elements

• Few requirements on type or format (heterogeneous)
• Elements are 1-4 components (e.g. R8G8B8A8, 8b int, 4x32b float)

– No filtering, subresourcing, multisampling
– Layout effectively linear (“casting” is possible)
– Examples: vertex buffers, index buffers, ConstantBuffers

Resources

TexturesBuffers
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Views

DX10 View of MemoryDX10 View of Memory

• Textures
– Collection of texels
– Can be filtered, subresourced, arrayed, mipmapped
– Unlike buffers, must be declared with texel type

• Type impacts filtering

– Layout is opaque - enables memory layout optimization 
– Examples: texture{1,2,3}d, mipmapped, cubemap

Resources

TexturesBuffers
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Views

DX10 View of MemoryDX10 View of Memory

• Views
– “mechanism for hardware interpretation of a 

resource in memory”
– Allows structured access of subresources
– Restricting view may increase efficiency

Resources

TexturesBuffers
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Big Picture: GPU Memory ModelBig Picture: GPU Memory Model

• GPUs are a mix of:
– Historical, fixed-function capabilities
– Newer, flexible, programmable capabilities

• Fixed-function:
– Known access patterns, behaviors
– Accelerated by special-purpose hardware

• Programmable:
– Unknown access patterns
– Generality good

• Memory model must account for both
– Consequence: Ample special-purpose functionality
– Consequence: Restricting flexibility may improve performance



DX10 Bind RulesDX10 Bind Rules

Geometry 
Processor Rasterizer Fragment

Processor
Vertex 

Processor

Input 
Assembler: 

Buffers

StreamOut:
Buffers

Shader Resource Input: 
Anything, but can only 

bind views

Render Target Output: 
Anything, but can only 

bind views

Shader Constants: Must 
be created as shader 
constant, can’t use in 

other views

Depth/Stencil Output: 
not buffers/texture3D, 
only can bind views of 

other resources
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Example: TextureExample: Texture

• Texture mapping fundamental primitive in GPUs
• Most typical use: random access, bound for read 

only, 2D texture map
– Hardware-supported caching & filtering

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)
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Example: Example: FramebufferFramebuffer
• Memory written by fragment processor
• Write-only GPU memory (from shader’s point of 

view)
– FB is read-modify-write by the pipeline as a whole

• Displayed to screen
• Can also store GPGPU results (not just color)

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor Frame
Buffer(s)
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Example: Render to TextureExample: Render to Texture

• Very common in both graphics & GPGPU
• Allows multipass algorithms

– Pass 1: Write data into framebuffer
– Pass 2: Bind as texture, read from

texture

• Store up to 32 32b FP values/pixel

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture

Frame
Buffer(s)
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Example: Render to Vertex ArrayExample: Render to Vertex Array

• Enables top-of-pipe feedback loop
• Enables dynamic creation of geometry on 

GPU

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor Frame
Buffer(s)
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Example: Stream Out to Vertex BufferExample: Stream Out to Vertex Buffer

• Enabled by DX10 StreamOut capability
• Expected to be used for dynamic geometry

– Recall geometry processor produces 0-n outputs per 
input

• Possible graphics applications:
– Expand point sprites
– Extrude silhouettes
– Extrude prisms/tets

Vertex 
Buffer

Geometry 
Processor

Vertex 
Processor

Stream
Out



SummarySummary

• Rich set of hardware primitives
– Designed for special purpose tasks, but often useful 

for general purpose ones

• Memory usage generally more restrictive 
than other processors
– Becoming more general-purpose and orthogonal

• Restricting generality allows hw/sw to 
cooperate for higher performance


