General-Purpose Computation on Graphics Hardware
Welcome & Overview

David Luebke
NVIDIA
Introduction

• The GPU on commodity video cards has evolved into an extremely flexible and powerful processor
 - Programmability
 - Precision
 - Power

• This tutorial will address how to harness that power for general-purpose computation
Motivation: Computational Power

• GPUs are fast...
 - 3.0 GHz Intel Core2 Duo (Woodcrest Xeon 5160):
 • Computation: 48 GFLOPS peak
 • Memory bandwidth: 21 GB/s peak
 • Price: $874 (chip)
 - NVIDIA GeForce 8800 GTX:
 • Computation: 330 GFLOPS observed
 • Memory bandwidth: 55.2 GB/s observed
 • Price: $599 (board)

• GPUs are getting faster, faster
 - CPUs: 1.4× annual growth
 - GPUs: 1.7×(pixels) to 2.3× (vertices) annual growth

Courtesy Kurt Akeley, Stanford GPUbench project
Motivation: Computational Power

Courtesy John Owens, Mike Houston
An Aside: Computational Power

Why are GPUs getting faster so fast?

- Arithmetic intensity
 - The specialized nature of GPUs makes it easier to use additional transistors for computation

- Economics
 - Multi-billion dollar video game market is a pressure cooker that drives innovation to exploit this property
Motivation: Flexible and Precise

• Modern GPUs are deeply programmable
 - Programmable pixel, vertex, and geometry engines
 - Solid high-level language support

• Modern GPUs support “real” precision
 - 32 bit floating point throughout the pipeline
 • High enough for many (not all) applications
 • Both vendors committed to double precision soon
 - DX10-class GPUs add 32-bit integers
Motivation: The Potential of GPGPU

• In short:
 - The power and flexibility of GPUs makes them an attractive platform for general-purpose computation
 - Example applications range from in-game physics simulation to conventional computational science
 - Goal: make the inexpensive power of the GPU available as a computational coprocessor
The Problem: Difficult To Use

• GPUs designed for & driven by video games
 - Programming model unusual
 - Programming idioms tied to computer graphics
 - Programming environment tightly constrained

• Underlying architectures are:
 - Inherently data parallel
 - Rapidly evolving (even in basic feature set!)
 - Largely secret

• Can’t simply “port” CPU code!
 - Good news: it’s getting better (CTM, CUDA)
Course goals

• A detailed introduction to general-purpose computing on graphics hardware

• We emphasize:
 - Core computational building blocks
 - Strategies, tools, and analysis for programming GPUs
 - Tips & tricks, perils & pitfalls of GPU programming

• Case studies to bring it all together
Course Prerequisites

• Tutorial intended to be accessible to any savvy computer scientist

• Helpful but not required: familiarity with
 - Interactive 3D graphics APIs and graphics hardware
 - Data-parallel algorithms and programming

• Target audience
 - HPC researchers interested in GPGPU research
 - HPC developers interested in incorporating GPGPU techniques into their work
 - Attendees wishing a survey of this exciting field
Speakers

- David Luebke, NVIDIA
- Mark Harris, NVIDIA
- John Owens, University of California Davis
- Naga Govindaraju, Microsoft Research
- Aaron Lefohn, Neoptica
- Mike Houston, Stanford
- Mark Segal, ATI
- Ian Buck, NVIDIA
- Matt Papakipos, PeakStream
Schedule

8:30 Introduction
 Tutorial overview, GPU architecture, GPGPU programming

GPU Building Blocks

9:10 Data-Parallel Algorithms
 Reduce, scan, scatter/gather, sort, and search

9:30 Memory Models
 GPU memory resources, CPU & Cell

9:45 Data Structures
 Static & dynamically updated data structures

10:00 Break
Schedule

10:30 Sorting & Data Queries Govindaraju
 Sorting networks & specializations, searching, data mining

11:00 Mathematical Primitives Lefohn
 Linear algebra, finite difference & finite element methods

Languages & Programming Environments

11:30 GPGPU Languages Houston
 Brook, RapidMind, Accelerator

12:00 Lunch
Schedule

1:30 Direct GPU Computing: CTM
 CTM, Data Parallel Virtual Machine
 Segal

1:45 Direct GPU Computing: CUDA
 GeForce 8800, Compute Unified Driver Architecture
 Buck

High Performance GPGPU

2:00 GPGPU Strategies & Tricks
 GPU performance guidelines, scatter, conditionals
 Owens

2:30 Performance Analysis & Arch Insights
 GPUBench, architectural models for programming
 Houston

3:00 Break
Schedule

GPGPU In Practice

3:30 Havok FX
Game Physics Simulation on GPUs
Harris

3:55 PeakStream Platform
Commercial GPGPU platform, HPC case studies
Papakipos

4:20 GPGPU Cluster Computing
Building GPU clusters; HMMer, GROMACS, Folding@Home
Houston

Conclusion

4:45 Question-and-answer session
All

5:00 Wrap!
• A simplified traditional graphics pipeline
 - It’s actually highly parallel
 - Note that pipe widths vary
 - Many caches, FIFOs, and so on not shown
GPU Fundamentals: The Recent Graphics Pipeline

- Programmable vertex processor
- Programmable pixel processor
GPU Fundamentals: The *New* Graphics Pipeline

- Programmable primitive generation
- More flexible memory access
- And much, much more
GPU Pipeline: Transform

- Vertex processor (multiple in parallel)
 - Transform from “world space” to “image space”
 - Compute per-vertex lighting
GPU Pipeline: Rasterize

- **Primitive generation**
 - Convert vertices into primitives with area
 - Triangles, quadrilaterals, points

- **Rasterization**
 - Convert geometric primitives to image primitives
 - Pixels, more generally called *fragments* (pixel + associated data: color, depth, stencil, etc.)
 - Interpolate per-vertex quantities across pixels
GPU Pipeline: Shade

- Fragment processors (multiple in parallel)
 - Compute a color for each pixel
 - Optionally read colors from textures (images)
Introduction to GPGPU Programming

David Luebke
NVIDIA
Outline

• Data Parallelism and Stream Processing
• Computational Resources Inventory
• CPU-GPU Analogies
• Example: N-body gravitational simulation
The Importance of Data Parallelism

• GPUs are designed for graphics

• Graphics processes independent vertices & pixels
 - Temporary registers are zeroed
 - No shared or static data
 - No read-modify-write buffers

• Data-parallel processing
 - GPUs architecture is ALU-heavy
 • Multiple vertex/pixel pipelines
 • For example, GeForce 8800 GTX has 128 scalar ALUs
 - Hide memory latency (with more computation)
Arithmetic Intensity

• Arithmetic intensity
 - ops per word transferred
 - Computation / bandwidth

• Best to have *high* arithmetic intensity

• Ideal GPGPU apps have
 - Large data sets
 • Amenable to streaming memory access
 - Lots of parallelism
 - High independence between data elements
Stream Processing

• Streams
 - Collection of records requiring similar computation
 • Vertex positions, Voxels, FEM cells, etc.
 - Provide data parallelism

• Kernels
 - Functions applied to each element in stream
 • transforms, PDE, ...
 - Few dependencies between stream elements
 • Encourage high arithmetic intensity
Example: Simulation Grid

• Common GPGPU computation style
 - Textures represent computational grids = streams

• Many computations map to grids
 - Matrix algebra
 - Image & volume processing
 - Physically-based simulation
 - Global illumination
 - Ray tracing, photon mapping, radiosity

• Non-grid streams can be mapped to grids
Stream Computation

- **Grid Simulation algorithm**
 - Made up of steps
 - Each step updates entire grid
 - Must complete before next step can begin

- **Grid is a stream, steps are kernels**
 - Kernel applied to each stream element
Computational Resources Inventory

- **Programmable parallel processors**
 - Vertex and fragment shader processors
 - Or unified design (ATI Xenos, NVIDIA GeForce 8800)

- **Rasterizer**
 - Mostly useful for interpolating addresses (texture coordinates) and constants

- **Texture unit**
 - Read-only memory interface
 - Optimized for coherent 2D access, rotation-invariant

- **Render to texture**
 - Write-only memory interface
 - No scatter
Vertex Processor

- Fully programmable (SIMD / MIMD)
- Processes 4-vectors (RGBA / XYZW)
- Capable of scatter but not gather
 - Can change the location of current vertex
 - Cannot read info from other vertices
 - Vertex texture fetch
 - Random access memory for vertices
 - Arguably still not gather
Fragment Processor

- Fully programmable (SIMD)
- Processes 4-component vectors (RGBA / XYZW)
 - Caveat: GeForce 8800 is scalar instead
- Random access memory read (textures)
- Capable of gather but not scatter
 - RAM read (texture fetch), but no RAM write
 - Output address fixed to a specific pixel
- Typically more useful than vertex processor
 - More fragment pipelines than vertex pipelines
 - Direct output (fragment processor is at end of pipeline)

- More on scatter/gather later...
CPU-GPU Analogies

- CPU programming is familiar
 - GPU programming is graphics-centric

- Analogies can aid understanding
CPU-GPU Analogies

<table>
<thead>
<tr>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream / Data Array</td>
<td>Texture</td>
</tr>
<tr>
<td>Memory Read</td>
<td>Texture Sample</td>
</tr>
</tbody>
</table>
Kernels

Kernel / loop body / algorithm step = Fragment Program
Feedback

- Each algorithm step depends on the results of previous steps
- Each time step depends on the results of the previous time step
Feedback

Grid[i][j] = x;

Array Write = Render to Texture
GPU Simulation Overview

• Analogies lead to implementation
 - Algorithm steps are fragment programs
 • Computational *kernels*
 - Current state is stored in textures
 - Feedback via render to texture

• One question: how do we invoke computation?
Invoking Computation

• **Must invoke computation at each pixel**
 - Just draw geometry!
 - Most common GPGPU invocation is a full-screen quad

• **Other Useful Analogies**
 - Rasterization = Kernel Invocation
 - Texture Coordinates = Computational Domain
 - Vertex Coordinates = Computational Range
Typical “Grid” Computation

- Initialize “view” (so that pixels:texels::1:1)

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  glOrtho(0, 1, 0, 1, 0, 1);
  glViewport(0, 0, outTexResX, outTexResY);
  ```

- For each algorithm step:
 - Activate render-to-texture
 - Setup input textures, fragment program
 - Draw a full-screen quad (1x1)
Example: N-Body Simulation

- Brute force
- N = 8192 bodies
- N^2 gravity computations

- 64M force comps. / frame
- ~25 flops per force

- GeForce 8800 GTX:
 - 16-bit floating point:
 - 73 fps, 122.5 GFLOPs sustained
 - 32-bit floating point:
 - 39 fps, 65.4 GFLOPS sustained
 - Teaser: 140 GFLOPS sustained (fp32, CUDA - preliminary!)

Nyland, Harris, Prins, GP² 2004 poster
Computing Gravitational Forces

• Each body attracts all other bodies
 - N bodies, so N^2 forces

• Draw into an $N \times N$ buffer
 - Pixel (i,j) computes force between bodies i and j
 - Very simple fragment program
 • More than 2048 bodies makes it trickier
 - Limited by max texture size...
 - “exercise for the reader”
Computing Gravitational Forces

\[F(i,j) = \frac{gM_iM_j}{r(i,j)^2}, \]

\[r(i,j) = |\text{pos}(i) - \text{pos}(j)| \]

Force is proportional to the inverse square of the distance between bodies.
Computing Gravitational Forces

\[F(i,j) = \frac{g M_i M_j}{r(i,j)^2}, \]
\[r(i,j) = |\text{pos}(i) - \text{pos}(j)| \]

Coordinates \((i,j)\) in force texture used to find bodies \(i\) and \(j\) in body position texture.
Computing Gravitational Forces

float4 force(float2 ij : WPOS,
 uniform sampler2D pos) : COLOR0
{
 // Pos texture is 2D, not 1D, so we need to
 // convert body index into 2D coords for pos tex
 float4 iCoords = getBodyCoords(ij);
 float4 iPosMass = texture2D(pos, iCoords.xy);
 float4 jPosMass = texture2D(pos, iCoords.zw);
 float3 dir = iPos.xyz - jPos.xyz;
 float r2 = dot(dir, dir);
 dir = normalize(dir);
 return dir * g * iPosMass.w * jPosMass.w / r2;
}
Computing Total Force

- Have: array of (i,j) forces
- Need: total force on each particle i
Computing Total Force

- Have: array of (i,j) forces
- Need: total force on each particle i
 - Sum of each column of the force array
Computing Total Force

- Have: array of (i,j) forces
- Need: total force on each particle i
 - Sum of each column of the force array
- Can do all N columns in parallel

This is called a *Parallel Reduction*
Update Positions and Velocities

• Now we have a 1-D array of total forces
 - One per body

• Update Velocity
 - \(u(i, t+dt) = u(i, t) + F_{total}(i) * dt \)
 - Simple fragment shader reads previous velocity and force textures, creates new velocity texture

• Update Position
 - \(x(i, t+dt) = x(i, t) + u(i, t) * dt \)
 - Simple fragment shader reads previous position and velocity textures, creates new position texture
Summary

• Presented mappings of basic computational concepts to GPUs
 - Basic concepts and terminology
 - For introductory “Hello GPGPU” sample code, see http://www.gpgpu.org/developer

• Only the beginning:
 - Rest of course presents advanced techniques, strategies, and specific algorithms.