Some Design Goals

- Scale to 100’s of cores, 1000’s of parallel threads
- Let programmers focus on parallel algorithms, *not* mechanics of a parallel programming language.
- Enable heterogeneous systems (i.e., CPU+GPU)
 - CPU & GPU are separate devices with separate DRAMs
Key Parallel Abstractions in CUDA

- Hierarchy of concurrent threads
- Lightweight synchronization primitives
- Shared memory model for cooperating threads
Hierarchy of concurrent threads

- Parallel **kernels** composed of many threads
 - all threads execute the same sequential program

- Threads are grouped into **thread blocks**
 - threads in the same block can cooperate

- Threads/blocks have unique IDs
Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
}
Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}
Synchronization of blocks

- Threads within block may synchronize with **barriers**

  ```
  ... Step 1 ...
  __syncthreads();
  ... Step 2 ...
  ```

- Blocks **coordinate** via atomic memory operations
 e.g., increment shared queue pointer with `atomicInc()`

- Implicit barrier between **dependent kernels**
  ```
  vec_minus<<<nblocks, blksize>>>(a, b, c);
  vec_dot<<<nblocks, blksize>>>(c, c);
  ```
What is a thread?

- Independent thread of execution
 - has its own PC, variables (registers), processor state, etc.
 - no implication about how threads are scheduled

- CUDA threads might be **physical** threads
 - as on NVIDIA GPUs

- CUDA threads might be **virtual** threads
 - might pick 1 block = 1 physical thread on multicore CPU
What is a thread block?

- **Thread block** = *virtualized multiprocessor*
 - freely choose processors to fit data
 - freely customize for each kernel launch

- **Thread block** = a (data) **parallel task**
 - all blocks in kernel have the same entry point
 - but may execute any code they want

- **Thread blocks of kernel** must be **independent** tasks
 - program valid for *any interleaving* of block executions
Blocks must be independent

Any possible interleaving of blocks should be valid
- presumed to run to completion without pre-emption
- can run in any order
- can run concurrently OR sequentially

Blocks may coordinate but not synchronize
- shared queue pointer: OK
- shared lock: BAD … can easily deadlock

Independence requirement gives scalability
Levels of parallelism

Thread parallelism
- each thread is an independent thread of execution

Data parallelism
- across threads in a block
- across blocks in a kernel

Task parallelism
- different blocks are independent
- independent kernels
Memory model

- Thread
 - Per-thread Local Memory

- Block
 - Per-block Shared Memory
Memory model

Host memory

cudaMemcpy()

Device 0 memory

Device 1 memory
Variables shared across block

```c
__shared__ int *begin, *end;
```

Scratchpad memory

```c
__shared__ int scratch[blocksize];
scratch[threadIdx.x] = begin[threadIdx.x];
// ... compute on scratch values ...
begin[threadIdx.x] = scratch[threadIdx.x];
```

Communicating values between threads

```c
scratch[threadIdx.x] = begin[threadIdx.x];
syncthreads();
int left = scratch[threadIdx.x - 1];
```
CUDA: Minimal extensions to C/C++

Declaration specifiers to indicate where things live

__global__ void KernelFunc(...); // kernel callable from host
__device__ void DeviceFunc(...); // function callable on device
__device__ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // in per-block shared memory

Extend function invocation syntax for parallel kernel launch

KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads each

Special variables for thread identification in kernels

dim3 threadIdx; dim3 blockIdx; dim3 blockDim;

Intrinsics that expose specific operations in kernel code

__syncthreads(); // barrier synchronization
CUDA: Features available on GPU

- Standard mathematical functions
 - `sinf`, `powf`, `atanf`, `ceil`, `min`, `sqrtf`, etc.

- Atomic memory operations
 - `atomicAdd`, `atomicMin`, `atomicAnd`, `atomicCAS`, etc.

- Texture accesses in kernels
  ```c
  texture<float, 2> my_texture;  // declare texture reference
  
  float4 texel = texfetch(my_texture, u, v);
  ```
CUDA: Runtime support

- **Explicit memory allocation returns pointers to GPU memory**

 `cudaMalloc()`, `cudaFree()`

- **Explicit memory copy for host ↔ device, device ↔ device**

 `cudaMemcpy()`, `cudaMemcpy2D()`, ...

- **Texture management**

 `cudaBindTexture()`, `cudaBindTextureToArray()`, ...

- **OpenGL & DirectX interoperability**

 `cudaGLMapBufferObject()`, `cudaD3D9MapVertexBuffer()`, ...
Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<< N/256, 256>>> (d_A, d_B, d_C);
}
Example: Host code for vecAdd

// allocate and initialize host (CPU) memory
float *h_A = ..., *h_B = ...;

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
Example: Parallel Reduction

Summing up a sequence with 1 thread:

```c
int sum = 0;
for(int i=0; i<N; ++i)  sum += x[i];
```

Parallel reduction builds a summation tree

- each thread holds 1 element
- stepwise partial sums
- N threads need log N steps

one possible approach: Butterfly pattern
Example: Parallel Reduction

Summing up a sequence with 1 thread:

```plaintext
int sum = 0;
for(int i=0; i<N; ++i)  sum += x[i];
```

Parallel reduction builds a summation tree
- each thread holds 1 element
- stepwise partial sums
- N threads need log N steps

one possible approach:
Butterfly pattern
Parallel Reduction for 1 Block

// INPUT: Thread i holds value x_i
int i = threadIdx.x;
__shared__ int sum[blocksize];

// One thread per element
sum[i] = x_i; __syncthreads();

for(int bit=blocksize/2; bit>0; bit/=2)
{
 int t=sum[i]+sum[i^bit]; __syncthreads();
 sum[i]=t; __syncthreads();
}

// OUTPUT: Every thread now holds sum in sum[i]
Example: Serial SAXPY routine

Serial program: compute \(y = \alpha x + y \) with a loop

```c
void saxpy_serial(int n, float a, float *x, float *y) {
    for(int i = 0; i<n; ++i)
        y[i] = a*x[i] + y[i];
}
```

Serial execution: call a function

```c
saxpy_serial(n, 2.0, x, y);
```
Example: Parallel SAXPY routine

Parallel program: compute with 1 thread per element

```c
__global__
void saxpy_parallel(int n, float a, float *x, float *y) 
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if( i<n )  y[i] = a*x[i] + y[i];
}
```

Parallel execution: launch a kernel

```c
uint size   = 256;       // threads per block
uint blocks = (n + size-1) / size;  // blocks needed
saxpy_parallel<<<blocks, size>>>(n, 2.0, x, y);
```
Compiling CUDA for GPUs

C/C++ CUDA Application

NVCC

PTX Code

CPU Code

Generic

PTX to Target Translator

GPU

... GPU

Target device code

Specialized
SAXPY in PTX 1.0 ISA

cvt.u32.u16 $blockid, %ctaid.x; // Calculate i from thread/block IDs
cvt.u32.u16 $blocksize, %ntid.x;
cvt.u32.u16 $tid, %tid.x;
mad24.lo.u32 $i, $blockid, $blocksize, $tid;
ld.param.u32 $n, [N]; // Nothing to do if n ≤ i
setp.le.u32 $p1, $n, $i;
@$p1 bra $L_finish;
mul.lo.u32 $offset, $i, 4; // Load y[i]
ld.param.u32 $yaddr, [Y];
add.u32 $yaddr, $yaddr, $offset;
ld.global.f32 $y_i, [$yaddr+0];
ld.param.u32 $xaddr, [X]; // Load x[i]
add.u32 $xaddr, $xaddr, $offset;
ld.global.f32 $x_i, [$xaddr+0];
ld.param.f32 $alpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32 $y_i, $alpha, $x_i, $y_i;
st.global.f32 [$yaddr+0], $y_i;
$L_finish: exit;
Sparse matrix-vector multiplication

- Sparse matrices have relatively few non-zero entries
- Frequently $O(n)$ rather than $O(n^2)$
- Only store & operate on these non-zero entries

Example: Compressed Sparse Row (CSR) Format

\[
\begin{bmatrix}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 4 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

- **Non-zero values**
 \[\mathbf{Av}[7] = \{3, 1, 2, 4, 1, 1, 1\};\]

- **Column indices**
 \[\mathbf{Aj}[7] = \{0, 2, 1, 2, 3, 0, 3\};\]

- **Row pointers**
 \[\mathbf{Ap}[5] = \{0, 2, 2, 5, 7\};\]
Sparse matrix-vector multiplication

```c
float multiply_row(uint rowsize, // number of non-zeros in row
                    uint *Aj,   // column indices for row
                    float *Av,  // non-zero entries for row
                    float *x)   // the RHS vector
{
    float sum = 0;
    for(uint column=0; column<rowsize; ++column)
        sum += Av[column] * x[Aj[column]];
    return sum;
}
```

Non-zero values

```
Av[7] = { 3, 1, 2, 4, 1, 1, 1 }
```

Column indices

```
Aj[7] = { 0, 2, 1, 2, 3, 0, 3 }
```

Row pointers

```
Ap[5] = { 0, 2, 2, 5, 7 }
```
Sparse matrix-vector multiplication

```c
float multiply_row(uint size, uint *Aj, float *Av, float *x);

void csrmul_serial(uint *Ap, uint *Aj, float *Av,
                    uint num_rows, float *x, float *y)
{
    for(uint row=0; row<num_rows; ++row)
    {
        uint row_begin = Ap[row];
        uint row_end = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin,
                               Aj+row_begin,
                               Av+row_begin,
                               x);
    }
}
```

Sparse matrix-vector multiplication

float multiply_row(uint size, uint *Aj, float *Av, float *x);

__global__
void csrmul_kernel(uint *Ap, uint *Aj, float *Av,
 uint num_rows, float *x, float *y)
{
 uint row = blockIdx.x*blockDim.x + threadIdx.x;
 if(row<num_rows)
 {
 uint row_begin = Ap[row];
 uint row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin,
 Aj+row_begin, Av+row_begin, x);
 }
}
Adding a simple caching scheme

```c
__global__ void csrmul_cached(...) {
    uint begin = blockIdx.x*blockDim.x,  end = begin+blockDim.x;
    uint row = begin + threadIdx.x;

    __shared__ float cache[blocksize];    // array to cache rows
    if( row<num_rows ) cache[threadIdx.x] = x[row];    // fetch to cache
    __syncthreads();

    if( row<num_rows ) {
        uint row_begin = Ap[row],  row_end = Ap[row+1];  float sum = 0;

        for(uint col=row_begin; col<row_end; ++col) {
            uint j = Aj[col];

            // Fetch from cached rows when possible
            float x_j = (j>=begin && j<end) ? cache[j-begin] : x[j];

            sum += Av[col] * x_j;
        }

        y[row] = sum;
    }
}
```

© NVIDIA Corporation 2008
Basic Efficiency Rules

- Develop algorithms with a data parallel mindset
- Minimize divergence of execution within blocks
- Maximize locality of global memory accesses
- Exploit per-block shared memory as scratchpad
- Expose enough parallelism
Summing Up

CUDA = C + a few simple extensions
- makes it easy to start writing basic parallel programs

Three key abstractions:
1. hierarchy of parallel threads
2. corresponding levels of synchronization
3. corresponding memory spaces

Supports massive parallelism of manycore GPUs
Questions?

mgarland@nvidia.com

http://www.nvidia.com/CUDA