CfP: 23rd High Performance Computing Symposium

September 5th, 2014

The 23rd High Performance Computing Symposium (April 12-15, 2015 in Alexandria, VA, USA) is devoted to the impact of high performance computing and communications on computer simulations. Topics of interest include:

  • GPU for general purpose computations (GPGPU)
  • Hybrid system modeling and simulation
  • Tools and environments for coupling parallel codes
  • Parallel algorithms and architectures
  • High performance software tools

Submission deadline for full papers: November 22, 2014. More information can be found at http://hosting.cs.vt.edu/hpc2015.

Course on Antenna Synthesis with elements of GPU computing

August 14th, 2014

The course on Antenna Synthesis (with elements of GPU computing) is organized in the framework of the European School of Antennas. The course will take place at the Partenope Conference Center of the Università di Napoli Federico II, Napoli, Italy, on October 13-17, 2014. It faces three topics corresponding to the two main aspects of Antenna Synthesis, namely external and internal synthesis, and to numerical and implementation issues on High Performance Computing (HPC) platforms of synthesis algorithms. For details about the course please see this brochure and http://www.antennasvce.org/Community/Education/Courses?id_folder=533.

Webinar: Next Steps for Folding@Home — a Distributed Computing Project for Protein Folding, by Vijay Pande

June 3rd, 2014

Folding@Home is a large-scale volunteer distributed computing project started in 2000 by Vijay Pande, Stanford. For over a decade, Professor Pande’s group has increased the computing power of Folding@Home through the development of new software algorithms and infrastructure, such as the incorporation of new hardware innovations like GPUs. That tremendous computing power has enabled significant advances in the simulation and understanding of diseases like Alzheimer’s Disease, malaria, various cancers, and other diseases at the molecular scale. Professor Pande will give a brief introduction to Folding@Home and the successes in the project so far. He will also discuss plans to greatly enhance Folding@Home capabilities through new initiatives. This webinar is planned for June 3rd, 2014 at 9.00 AM Pacific Time. Register at: http://bit.ly/FolHome

CfP: GPU in High Energy Physics 2014

June 3rd, 2014

The conference focuses on the application of GPUs in High Energy Physics (HEP), expanding on the trend of previous workshops on the topic and pointing to establishing a recurrent series. The emerging paradigm of the use of graphic processors as powerful accelerators in data- and computation-intensive applications found fertile ground in the computing challenges of the HEP community and is currently object of active investigations. This follows a long established trend which sees the increased use of cheap off-the-shelf commercial units to achieve unprecedented performances in parallel data processing, thus leveraging on a very strong commitment of hardware producers to the huge market of computer graphics and games. These hardware advances comes together with the continuous development of proprietary and free software to expose the raw computing power of GPUs for general-purpose applications and scientific computing in particular. All different applications of massively parallel computing in HEP will be addressed, from computational speed-ups in online and offline data selection and analysis to hard real-time applications in low-level triggering, to MonteCarlo simulations for lattice QCD. Both current activities and plans for foreseen experiments and projects will be discussed, together with perspectives on the evolution of the hardware and software.

The conference is held in Pisa (Italy), 10.9.2014 – 12.9.2014. More information: http://www.pi.infn.it/gpu2014

Workshop on GPU Programming for Molecular Modeling, Urbana, IL, July 22-24, 2014

April 16th, 2014

The GPU Programming for Molecular Modeling workshop will extend GPU programming techniques to the field of molecular modeling, including subjects such as particle-grid algorithms (electrostatics, molecular surfaces, density maps, and molecular orbitals), particle-particle algorithms with an emphasis on non-bonded force calculations, radial distribution functions in GPU histogramming, single-node multi-GPU algorithms, and GPU clusters. Specific examples utilizing the NAMD and VMD software programs will be introduced and discussed in detail. The workshop is designed for researchers in computational and/or biophysical fields who seek to extend their GPU programming skills to include molecular modeling. Advanced lecture sessions will be followed by extended discussion periods between lecturers and participants and laboratory time in which students will be able to work on their own molecular modeling GPU codes. See workshop website for details and application: http://www.ks.uiuc.edu/Training/Workshop/GPU_Jul2014/

Webinar on April 8th: Geospatial 3D Visualization in the Cloud with GPUs

April 2nd, 2014

This webinar covers how Geoweb3d uses the GPU for real-time geospatial 3D visualization, modeling, and analytics. Geoweb3D will demonstrate how native, high resolution datasets including GIS, CAD, 3D Models, LIDAR, and FMV are fused together in real-time with game quality graphics and pixel accurate analysis. The 3D engine uses a GPU resident mesh that adapts to any resolution data on the fly eliminating the need to preprocess any data prior to real-time use. Demonstration will include Geoweb3d Mobile which now uses HTML5 for use on any device in the cloud including phones and tablets.

To register follow this link: https://www2.gotomeeting.com/register/226039466

CfP: Workshop on Heterogeneous and Unconventional Cluster Architectures and Applications (HUCAA2014)

March 28th, 2014

The workshop on Heterogeneous and Unconventional Cluster Architectures and Applications, held in conjunction with ICPP 2014, September 9-12, 2014, Minneapolis, MN, USA, gears to gather recent work on heterogeneous and unconventional cluster architectures and applications, which might have a big impact on future cluster architectures. This includes any cluster architecture that is not based on the usual commodity components and therefore makes use of some special hard- or software elements, or that is used for very special and unconventional applications. In particular we call for GPUs and other accelerators (Intel MIC/Xeon Phi, FPGA) used at cluster level. Other examples include virtualization, in-memory storage, hard- and software interactions, run-times, databases, and device-to-device communication. We are in particular encouraging work on disruptive approaches, which may show inferior performance today but can already point out their performance potential. The broad scope of the workshop facilitates submissions on unconventional uses of hardware or software, gearing to gather ideas that are coming to life now and not limiting them except for their context: clusters. Also, these proposals may rather be reflective of a broader industry trend.

We are seeking new proposals presented from a holistic perspective. In this regard, one of the aims of the workshop is anticipating the evolution of clusters. Instead of just presenting new work carried out in the traditional cluster areas usually addressed in other conferences and workshops, we are thinking on creating the right atmosphere for a discussion of opportunities in cluster computing. In this regard, contributions would not only be accepted according to their technical merits but also according to their contribution to this discussion.

More information: http://www.hucaa-workshop.org/hucaa2014

CfP: 7th Workshop on UnConventional High Performance Computing 2014 (UCHPC 2014)

March 10th, 2014

The 7th UCHPC workshop will beheld in conjunction with Euro-Par 2014, August 25 – August 29, in Porto, Portugal.

Recent issues with the power consumption of conventional HPC hardware results in both new interest in accelerator hardware and in usage of mass-market hardware originally not designed for HPC. The most prominent examples are GPUs, but FPGAs, DSPs and embedded designs are also possible candidates to provide higher power efficiency, as they are used in energy-restriced environments, such as smartphones or tablets. The so-called “dark silicon” forecast, i.e. not all transistors may be active at the same time, may lead to even more specialized hardware in future mass-market products. Exploiting this hardware for HPC can be a worthwhile challenge.

Read the rest of this entry »

CfP: 2nd Workshop on Parallel and Distributed Agent-Based Simulations (PADABS 2014)

March 10th, 2014

Agent-Based Simulation Models are an increasingly popular tool for research and management in many fields such as ecology, economics and sociology. In some fields, such as social sciences, these models are seen as a key instrument to the generative approach, essential for understanding complex social phenomena. But also in policy-making, biology, military simulations, control of mobile robots and economics, the relevance and effectiveness of Agent-Based Simulation Models is recently recognized.

Several frameworks have been recently developed and are active in this field. They range from GPU-manycore approaches to parallel and/or distributed simulation environments.

The key objective of this workshop is to bring together researchers that are interested in getting more performances from their simulations by using synchronized, many-core simulations (e.g., GPUs), strongly coupled, parallel simulations (e.g. MPI) and loosely coupled, distributed simulations (distributed heterogeneous setting). More information: http://www.padabs.org/

Webinar: Accelerating Full Waveform Inversion via OpenCL on AMD GPUs

February 26th, 2014

On March 5 at 11:00am (PST), Acceleware hosts a webinar on accelerating a seismic algorithm on a cluster of AMD GPU compute nodes. The presentation will begin with an outline of the full waveform inversion (FWI) algorithm, followed by an introduction to OpenCL. The OpenCL programming model and memory spaces will be introduced. Strategies for formulating the problem to take advantage of the massively parallel GPU architecture, and key optimizations techniques are discussed including coalescing and an iterative approach to handle the slices. Performance results for the GPU are compared to the CPU run times. Click here to register.

Page 1 of 2712345...1020...Last »