AMD CodeXL: comprehensive developer tool suite for heterogeneous compute

October 9th, 2012

AMD CodeXL is a new unified developer tool suite that enables developers to harness the benefits of CPUs, GPUs and APUs. It includes powerful GPU debugging, comprehensive GPU and CPU profiling, and static OpenCL™ kernel analysis capabilities, enhancing accessibility for software developers to enter the era of heterogeneous computing. AMD CodeXL is available for free, both as a Visual Studio® extension and a standalone user interface application for Windows® and Linux®.

AMD CodeXL increases developer productivity by helping them identify programming errors and performance issues in their application quickly and easily. Now developers can debug, profile and analyze their applications with a full system-wide view on AMD APU, GPU and CPUs.

AMD CodeXL user group (requires registration) allows users to interact with the CodeXL team, provide feedback, get support and participate in the beta surveys.

Accelerating CFD using OpenFOAM with GPUs

September 23rd, 2012

The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide range of engineering and science disciplines in both commercial and academic organizations. OpenFOAM has an extensive range of features to solve a wide range of fluid flows and physics phenomenon. OpenFOAM provides tools for all three stages of CFD, preprocessing, solvers, and post processing. Almost all are capable of being run in parallel as standard making it an important resource for a wide range of scientists and engineers using HPC for CFD.

General-purpose Graphics Processing Unit (GPU) technology is increasingly being used to accelerate compute-intensive HPC applications across various disciplines in the HPC community. OpenFOAM CFD simulations can take a significant amount of time and are computationally intensive. Comparing various alternatives for enabling faster research and discovery using CFD is of key importance. SpeedIT libraries from Vratis provide GPU-accelerated iterative solvers that replace the iterative solvers in OpenFOAM.

In order to investigate the GPU-acceleration of OpenFOAM, we simulate the three dimensional lid-driven cavity problem based on the tutorial provided with OpenFOAM. The 3D lid-driven cavity problem is an incompressible flow problem solved using OpenFOAM icoFoam solver. The majority of the computationally intensive portion of the solver is the pressure equation. In the case of acceleration, only the pressure calculation is offloaded to the GPUs. On the CPUs, the PCG solver with DIC preconditioner is used. In the GPU-accelerated case, the SpeedIT 2.1 algebraic multigrid precoditioner with smoothed aggregation (AMG) in combination with the SpeedIT Plugin to OpenFOAM is used.

NSF Sponsors Nationwide OpenACC Workshop

September 22nd, 2012

Recognizing the growing interest and demand from NSF researchers for education on GPU computing, leading centers in NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) program are working together to host a free two-day, hands-on workshop to share tips and best practices for accelerating scientific applications on GPUs using OpenACC. More information: http://blogs.nvidia.com/2012/09/u-s-scientists-nsf-to-host-nationwide-gpu-computing-workshop/

Symposium on Personal High-Performance Computing

September 20th, 2012

The Vrije Universiteit Brussel, Erasmus Hogeschool Brussel and Lessius Hogeschool have the pleasure to invite you to a symposium on Personal High-Performance Computing. The symposium aims at bringing together academia and industry to discuss recent advances in using accelerators such as GPUs or FPGAs for speeding up computational-intensive applications. We target single systems such as PCs, laptops or processor boards, hence the name ‘personal’ HPC.

Scientists are encouraged to submit abstracts to be presented at the poster session. All information can be found at https://sites.google.com/site/phpc2012bxl.

CLU Runtime and Code Generator

August 20th, 2012

The Computing Language Utility (CLU) is a lightweight API designed to help programmers explore, learn, and rapidly prototype programs with OpenCL. This API reduces the complexity associated with initializing OpenCL devices, contexts, kernels and parameters, etc. while preserving the ability to drop down to the lower level OpenCL API at will when programmers wants to get their hands dirty. The CLU release includes an open source implementation along with documentation and samples that demonstrate how to use CLU in real applications. It has been tested on Windows 7 with Visual Studio.

Virtual OpenCL (VCL) Cluster Platform 1.14 released

August 10th, 2012

The MOSIX group announces the release of the Virtual OpenCL (VCL) cluster platform version 1.14. This version includes the SuperCL extension that allows micro OpenCL programs to run efficiently on devices of remote nodes. VCL provides an OpenCL platform in which all the cluster devices are seen as if they are located in the hosting-node. This platform benefits OpenCL applications that can use many devices concurrently. Applications written for VCL benefit from the reduced programming complexity of a single computer, the availability of shared-memory, multi-threads and lower granularity parallelism, as well as concurrent access to devices in many nodes. With SuperCL, a programmable sequence of kernels and/or memory operations can be sent to remote devices in cluster nodes, usually with just a single network round-trip. SuperCL also offers asynchronous communication with the host, to avoid the round-trip waiting time, as well as direct access to distributed file-systems. The VCL package can be downloaded from mosix.org.

AMD OpenCL Webinar Series – August Line Up

August 9th, 2012

Graphics Core Next Architecture Overview

GCN is Designed to push not only the boundaries of DirectX® 11 gaming, the GCN Architecture is also AMD’s first design specifically engineered for general computing. Equipped with up to 32 compute units (2048 stream processors), each containing a scalar coprocessor, AMD’s 28nm GPUs are more than capable of handling workloads-and programming languages-traditionally exclusive to the processor. Coupled with the dramatic rise of GPU-aware programming languages like C++ AMP and OpenCL™, the GCN Architecture is truly the right architecture for the right time. Participate in this webinar to learn how you can take advantage of this new architecture in your GPGPU programs (North America – August 14, 2012 10AM Pacific Daylight savings Time; India- August 21, 2012, 5:30PM India Standard Time).

Performance Evaluation of AMD APARAPI Using Real World Applications

Read the rest of this entry »

Acceleware OpenCL, CUDA and AMP training

August 9th, 2012

The fall schedule for Acceleware’s training courses is now available.

  • OpenCL: August 21-24, 2012, Houston, TX
  • CUDA: October 2-5, 2012, San Jose, CA
  • OpenCL: October 16-19, 2012, Calgary, AB
  • CUDA: November 6-9, 2012, Houston, TX
  • CUDA: December 4-7, 2012, New York, NY – Finance Focus
  • AMP: December 11-14, 2012, Chicago, IL

More information: http://www.acceleware.com/training

OpenACC Compilers Now Available from PGI

July 27th, 2012

PGI Release 12.6 is now out. New in this release:

  • PGI Accelerator compilers — first release of the Fortran and C compilers to include comprehensive support for the OpenACC 1.0 specification including the acc cache construct and the entire OpenACC API library. See the PGI Accelerator page for a complete list of supported features.
  • CUDA Toolkit — PGI Accelerator compilers and CUDA Fortran now include support for CUDA Toolkit version 4.2; version 4.1 is now the default.

Download a free trial from the PGI website at http://www.pgroup.com/support/download_pgi2012.php?view=current. Upcoming PGI webinar with Michael Wolfe. 9:00AM PDT, July 31st sponsored by NVIDIA: “Using OpenACC Directives with the PGI Accelerator Compilers”. Register at http://www.pgroup.com/webinar212.htm?clicksource=gpgpu712.

MC# 3.0 with GPU support

July 22nd, 2012

Version 3.0 of the MC# programming system has been released. MC# is an universal parallel programming language aimed to any parallel architecture  -  multicore processors, systems with GPU, or clusters. It is an extension of C# language and supports high-level parallel programming style.

Page 5 of 39« First...34567...102030...Last »