Which is faster Constant Cache or Read-only Cache? – Part Two

November 4th, 2013

One of the keys to achieving maximum performance in CUDA is taking advantage of the various memory spaces. Part II of Acceleware’s tutorial has now been published. The tutorial uses a simple encryption kernel to test and compare read-only cache, constant cache and global memory. Read the full tutorial…

Webinar: Face-in-the-crowd recognition with GPUs

November 4th, 2013

A free webinar on accelerating face-in-the-crowd recognition with GPU technology will be held on November 5th. It teaches how GPUs can be used to accelerate face detection and recognition of people in the crowd. The presentation will also cover the speakers’ use of ROS, OpenCV, OpenMP, and Armadillo libraries to develop fast reliable distributed video processing code. To register follow the link: https://www2.gotomeeting.com/register/292953058

PPAM 2013 CUDA Course Notes

September 9th, 2013

All course material from the full-day CUDA tutorial at PPAM 2013 are now available at http://gpgpu.org/ppam2013. The tutorial was held on Sunday, Sep. 8 2013 in Warsaw, Poland.

New CUDA Technical Blog: Constant Cache vs. Read-only Cache

September 9th, 2013

This blog takes a closer look at constant cache and read-only cache. It highlights the differences between the two memory types and what circumstances they perform best in. Read the whole story here.

rCUDA now available for the ARM architecture

July 26th, 2013

The rCUDA team is glad to announce that its remote GPU virtualization technology now supports the ARM processor architecture. The new release of rCUDA for this low-power processor has been developed for the Ubuntu 11.04 and Ubuntu 12.04 ARM linux distributions. With this new rCUDA release, it is also possible to leverage hybrid platforms where the application uses ARM CPUs while requesting acceleration services provided by remote GPUs installed in x86 nodes. The opposite is also possible: an application running in an x86 computer can access remote GPUs attached to ARM systems. Please visit rCUDA website for more information or for requesting a free copy of the rCUDA middleware.

OpenCV and CUDA webinar, July 30th

July 23rd, 2013

Anatoly Baksheev, OpenCV GPU Module Team Leader at Itseez will demonstrate how to obtain and build OpenCV, its GPU module, and the sample programs. You will learn how to use the OpenCV GPU module and create your own custom GPU functions for OpenCV. Register for the July 30th webinar: http://goo.gl/5V3eA

AMD Releases APP SDK 2.8.1 with support for Bolt C++ Template Library, OpenCV, and GCN

July 14th, 2013

From a recent press release:

AMD’s APP SDK is an essential resource for developers who wish to leverage the processing power of heterogeneous computing. OpenCL™ is the primary mechanism for achieving this today, but AMD’s goal is to enable developers to accelerate applications with the programming paradigm of their choice. Toward that end, AMD has added support for heterogeneous libraries such as the newly released Bolt open source C++ template library and OpenCV computer vision library which now includes heterogeneous acceleration.

New to APP SDK 2.8.1:

Bolt: With the recent launch of Bolt 1.0, AMD has added several samples to the APP SDK to demonstrate Bolt 1.0 features. These showcase the usage of Bolt APIs such as scan, sort, reduce and transform. Other new samples highlight the ease of porting from STL and the performance benefits achieved over equivalent STL implementations. We’ve also included samples to demonstrate the different fallback options available in Bolt 1.0 when no GPU is available which ensure your code runs correctly on any platform.

OpenCV: AMD has been working closely with the OpenCV open source community to add heterogeneous acceleration capability to the world’s most popular computer vision library. These changes are already integrated into OpenCV and are readily available for developers who want to improve performance and efficiency of their computer vision applications. AMD has included samples to illustrate these improvements and highlight how simple it is to include them in your app.

GCN: AMD recently launched its new Graphics Core Next (GCN) architecture on several AMD products. GCN is based on a scalar architecture vs. the VLIW vector architecture of prior generations, so hand-tuned vectorization to optimize hardware utilization is no longer needed. We’ve modified several samples in AMD APP SDK 2.8.1 to show the ease of writing scalar code as compared to vectorization.

For more information, see developer.amd.com.

Thrust v1.7 Released

July 4th, 2013

The Thrust team is pleased to announce the release of Thrust v1.7, an open-source C++ library for developing high-performance parallel applications. Modeled after the C++ Standard Template Library, Thrust brings a familiar abstraction layer to the realm of parallel computing

Thrust 1.7.0 introduces a new interface for controlling algorithm execution as well as several new algorithms and performance improvements. With this new interface, users may directly control how algorithms execute as well as details such as the allocation of temporary storage. Key/value versions of thrust::merge and the set operation algorithms have been added, as well stencil versions of partitioning algorithms. For 32b types, new CUDA merge and set operations provide 2-15x faster performance while a new CUDA comparison sort provides 1.3-4x faster performance.

Thrust is open-source software distributed under the OSI-approved Apache License 2.0.

Intel Releases SDK with OpenCL* 1.2 support for Intel® Xeon Phi™ Coprocessors

May 11th, 2013

The new Intel® SDK for OpenCL* Applications XE 2013 includes certified OpenCL 1.2 support for Intel® Xeon® processors and Intel® Xeon Phi™ coprocessors using Linux* operating systems. This SDK is targeted at developers of highly parallel applications including High Performance Compute (HPC), workstations, and data analytics, to name just a few. OpenCL broadens the parallel programming options on Intel® architecture and allows developers to maximize data parallel application performance on Intel Xeon Phi coprocessors.
The Intel SDK for OpenCL Applications XE 2013 provides developers OpenCL runtime and compiler, development tools, optimization guides, code samples, and training collaterals. More information: www.intel.com/software/opencl-xe

Fast GPU Debayer Software

March 13th, 2013

The GPU Debayer software developed by Fastvideo can be used for demosaicing of raw 8-bit Bayer images to full-color 24-bit RGB format. The application employs the HQLI and DFPD algorithms and is tuned for NVIDIA GPUs, which results in very fast conversion, e.g., only 1.25 ms for Full HD image demosaicing on GeForce GTX 580. The software is freely available.

Page 5 of 41« First...34567...102030...Last »