GPU-Accelerated Inter-Cell Interference Coordination for LTE

April 21st, 2015


To minimize interference in LTE networks, several inter-cell interference coordination (ICIC) techniques have been introduced. Among them, semi-static ICIC offers a balanced trade-off between applicability and system performance. The power allocation per resource block and cell is adapted in the range of seconds according to the load in the system. An open issue in the literature is the question how fast the adaptation should be performed. This leads basically to a trade-off between system performance and feasible computation times of the associated power allocation problems. In this work, we close this open issue by studying the impact that different durations of update times of semi-static ICIC have on the system performance. We conduct our study on realistic scenarios considering also the mobility of mobile terminals. Secondly, we also consider the implementation aspects of a semi-static ICIC. We introduce a very efficient implementation on general purpose graphic processing units, harnessing the parallel computing capability of such devices. We show that the update periods have a significant impact on the performance of cell edge terminals. Additionally, we present a graphic processing unit (GPU) based implementation which speeds up existing implementations up to a factor of 92x.

Parruca, Donald and Aizaz, Fahad and Chantaraskul, Soamsiri and Gross, James. “Semi-static Interference Coordination in OFDMA/LTE Networks: Evaluation of Practical Aspects. In Proceedings of the 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 87-94 2014.