Forward and Adjoint Simulations of Seismic Wave Propagation on Emerging Large-Scale GPU Architectures

November 14th, 2012

Abstract:

SPECFEM3D is a widely used community code which simulates seismic wave propagation in earth-science applications. It can be run either on multi-core CPUs only or together with many-core GPU devices on large GPU clusters. The new implementation is optimally fine-tuned and achieves excellent performance results. Mesh coloring enables an efficient accumulation of border nodes in the assembly process over an unstructured mesh on the GPU and asynchronous GPU-CPU memory transfers and non-blocking MPI are used to overlap communication and computation, effectively hiding synchronizations. To demonstrate the performance of the inversion, we present two case studies run on the Cray XE6 and XK6 architectures up to 896 nodes: (1) focusing on most commonly used forward simulations, we simulate wave propagation generated by earthquakes in Turkey, and (2) testing the most complex simulation type of the package, we use ambient seismic noise to image 3D crust and mantle structure beneath western Europe.

(Max Rietmann, Peter Messmer, Tarje Nissen-Meyer, Daniel Peter, Piero Basini, Dimitri Komatitsch, Olaf Schenk,  Jeroen Tromp, Lapo Boschi and Domenico Giardini, “Forward and Adjoint Simulations of Seismic Wave Propagation on Emerging Large-Scale GPU Architectures”, Proceedings of the 2012 ACM/IEEE conference on Supercomputing, Nov. 2012. [WWW])