Automatic tuning of the sparse matrix vector product on GPUs based on the ELLR-T approach

June 22nd, 2012


A wide range of applications in engineering and scientific computing are involved in the acceleration of the sparse matrix vector product (SpMV). Graphics Processing Units (GPUs) have recently emerged as platforms that yield outstanding acceleration factors. SpMV implementations for GPUs have already appeared on the scene. This work is focused on the ELLR-T algorithm to compute SpMV on GPU architecture, its performance is strongly dependent on the optimum selection of two parameters. Therefore, taking account that the memory operations dominate the performance of ELLR-T, an analytical model is proposed in order to obtain the auto-tuning of ELLR-T for particular combinations of sparse matrix and GPU architecture. The evaluation results with a representative set of test matrices show that the average performance achieved by auto-tuned ELLR-T by means of the proposed model is near to the optimum. A comparative analysis of ELLR-T against a variety of previous proposals shows that ELLR-T with the estimated configuration reaches the best performance on GPU architecture for the representative set of test matrices.

(Francisco Vázquez and José Jesús Fernández and Ester M. Garzón: “Automatic tuning of the sparse matrix vector product on GPUs based on the ELLR-T approach”, Parallel Computing 38(8), 408-420, Aug. 2012. [DOI])